import os import gradio as gr from openai import OpenAI title = "ERNIE X1 Turbo: BAIDU's Reasoning LLM" description = """ - Official Website: (UI in Chinese) - API services: [Qianfan Large Model Platform](https://cloud.baidu.com/product-s/qianfan_home) (cloud platform providing LLM services, UI in Chinese) - [ERNIE 4.5 Turbo Demo](https://huggingface.co./spaces/PaddlePaddle/ernie_4.5_turbo_demo) | [ERNIE X1 Turbo Demo](https://huggingface.co./spaces/PaddlePaddle/ernie_x1_turbo_demo) """ qianfan_api_key = os.getenv("QIANFAN_TOKEN") qianfan_model = "ernie-x1-turbo-32k" client = OpenAI(base_url="https://qianfan.baidubce.com/v2", api_key=qianfan_api_key) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, ): messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) response = client.chat.completions.create( model=qianfan_model, messages=messages, max_completion_tokens=max_tokens, stream=True, ) reasoning_content = "**Thinking**:\n" content = "\n\n**Answer**: \n" for chunk in response: if hasattr(chunk.choices[0].delta, 'reasoning_content'): token = chunk.choices[0].delta.reasoning_content if token: reasoning_content += token yield reasoning_content elif hasattr(chunk.choices[0].delta, 'content'): token = chunk.choices[0].delta.content if token: content += token yield reasoning_content + content demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=2, maximum=16384, value=10240, step=1, label="Max new tokens"), ], title=title, description=description, type='messages', concurrency_limit=50 ) if __name__ == "__main__": demo.launch()