|
import os |
|
import gradio as gr |
|
from openai import OpenAI |
|
|
|
title = "ERNIE X1 Turbo: BAIDU's Reasoning LLM" |
|
description = """ |
|
- Official Website: <https://yiyan.baidu.com/> (UI in Chinese) |
|
- API services: [Qianfan Large Model Platform](https://cloud.baidu.com/product-s/qianfan_home) (cloud platform providing LLM services, UI in Chinese) |
|
- [ERNIE 4.5 Turbo Demo](https://huggingface.co./spaces/PaddlePaddle/ernie_4.5_turbo_demo) | [ERNIE X1 Turbo Demo](https://huggingface.co./spaces/PaddlePaddle/ernie_x1_turbo_demo) |
|
""" |
|
|
|
|
|
qianfan_api_key = os.getenv("QIANFAN_TOKEN") |
|
qianfan_model = "ernie-x1-turbo-32k" |
|
|
|
|
|
client = OpenAI(base_url="https://qianfan.baidubce.com/v2", api_key=qianfan_api_key) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
messages.extend(history) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = client.chat.completions.create( |
|
model=qianfan_model, |
|
messages=messages, |
|
max_completion_tokens=max_tokens, |
|
stream=True, |
|
) |
|
|
|
reasoning_content = "**Thinking**:\n" |
|
content = "\n\n**Answer**: \n" |
|
|
|
for chunk in response: |
|
if hasattr(chunk.choices[0].delta, 'reasoning_content'): |
|
token = chunk.choices[0].delta.reasoning_content |
|
if token: |
|
reasoning_content += token |
|
yield reasoning_content |
|
elif hasattr(chunk.choices[0].delta, 'content'): |
|
token = chunk.choices[0].delta.content |
|
if token: |
|
content += token |
|
yield reasoning_content + content |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="", label="System message"), |
|
gr.Slider(minimum=2, maximum=16384, value=10240, step=1, label="Max new tokens"), |
|
], |
|
title=title, |
|
description=description, |
|
type='messages', |
|
concurrency_limit=50 |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|