import os import gradio as gr from openai import OpenAI title = "ERNIE 4.5 Turbo: BAIDU's LLM" description = """ - Official Website: (UI in Chinese) - API services: [Qianfan Large Model Platform](https://cloud.baidu.com/product-s/qianfan_home) (cloud platform providing LLM services, UI in Chinese) - [ERNIE 4.5 Turbo Demo](https://huggingface.co./spaces/PaddlePaddle/ernie_4.5_turbo_demo) | [ERNIE X1 Turbo Demo](https://huggingface.co./spaces/PaddlePaddle/ernie_x1_turbo_demo) """ qianfan_api_key = os.getenv("QIANFAN_TOKEN") qianfan_model = "ernie-4.5-turbo-32k" client = OpenAI(base_url="https://qianfan.baidubce.com/v2", api_key=qianfan_api_key) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] messages.extend(history) messages.append({"role": "user", "content": message}) response = client.chat.completions.create( model=qianfan_model, messages=messages, max_completion_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ) output_message = "" for chunk in response: token = chunk.choices[0].delta.content output_message += token yield output_message demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=2, maximum=12288, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Top-p (nucleus sampling)", ), ], title=title, description=description, type='messages', concurrency_limit=50 ) if __name__ == "__main__": demo.launch()