Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -6,16 +6,14 @@ import pandas as pd
|
|
6 |
import os
|
7 |
import torch
|
8 |
|
9 |
-
# Check
|
10 |
print("CUDA available:", torch.cuda.is_available())
|
11 |
-
|
12 |
if torch.cuda.is_available():
|
13 |
print("GPU Name:", torch.cuda.get_device_name(0))
|
14 |
else:
|
15 |
print("No GPU detected. Running on CPU.")
|
16 |
|
17 |
-
|
18 |
-
# Set a seed for reproducibility
|
19 |
set_seed(42)
|
20 |
|
21 |
# Define the six premium generation models:
|
@@ -43,20 +41,20 @@ grammar_model_names = [
|
|
43 |
"hassaanik/grammar-correction-model"
|
44 |
]
|
45 |
|
46 |
-
#
|
|
|
|
|
|
|
47 |
def load_generation_pipeline(model_name):
|
48 |
try:
|
49 |
-
# Use device=0 if GPU is available; otherwise, use CPU (device=-1)
|
50 |
-
device = 0 if torch.cuda.is_available() else -1
|
51 |
return pipeline("text-generation", model=model_name, device=device)
|
52 |
except Exception as e:
|
53 |
print(f"Error loading generation model {model_name}: {e}")
|
54 |
return None
|
55 |
|
56 |
-
# Function to load grammar evaluation pipelines.
|
57 |
def load_grammar_pipeline(model_name):
|
58 |
try:
|
59 |
-
device = 0 if torch.cuda.is_available() else -1
|
60 |
return pipeline("text2text-generation", model=model_name, device=device)
|
61 |
except Exception as e:
|
62 |
print(f"Error loading grammar model {model_name}: {e}")
|
@@ -76,12 +74,12 @@ def is_palindrome(text):
|
|
76 |
cleaned = clean_text(text)
|
77 |
return cleaned == cleaned[::-1]
|
78 |
|
79 |
-
# Updated prompt
|
80 |
def build_prompt(lang):
|
81 |
return (
|
82 |
f"Instruction: Generate a single original palindrome in {lang}.\n"
|
83 |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
|
84 |
-
"Do not output any additional text
|
85 |
"Palindrome: "
|
86 |
)
|
87 |
|
@@ -144,6 +142,7 @@ def run_benchmark_all():
|
|
144 |
print(f"CSV saved to {os.path.abspath(csv_path)}")
|
145 |
return gr.Dataframe(df), csv_path
|
146 |
|
|
|
147 |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
|
148 |
gr.Markdown("# Premium Model Palindrome Benchmark")
|
149 |
gr.Markdown(
|
|
|
6 |
import os
|
7 |
import torch
|
8 |
|
9 |
+
# Check GPU availability (for debugging)
|
10 |
print("CUDA available:", torch.cuda.is_available())
|
|
|
11 |
if torch.cuda.is_available():
|
12 |
print("GPU Name:", torch.cuda.get_device_name(0))
|
13 |
else:
|
14 |
print("No GPU detected. Running on CPU.")
|
15 |
|
16 |
+
# Set seed for reproducibility
|
|
|
17 |
set_seed(42)
|
18 |
|
19 |
# Define the six premium generation models:
|
|
|
41 |
"hassaanik/grammar-correction-model"
|
42 |
]
|
43 |
|
44 |
+
# Determine device: Use GPU (0) if available, otherwise CPU (-1)
|
45 |
+
device = 0 if torch.cuda.is_available() else -1
|
46 |
+
|
47 |
+
# Function to load generation pipelines with appropriate device setting.
|
48 |
def load_generation_pipeline(model_name):
|
49 |
try:
|
|
|
|
|
50 |
return pipeline("text-generation", model=model_name, device=device)
|
51 |
except Exception as e:
|
52 |
print(f"Error loading generation model {model_name}: {e}")
|
53 |
return None
|
54 |
|
55 |
+
# Function to load grammar evaluation pipelines with appropriate device setting.
|
56 |
def load_grammar_pipeline(model_name):
|
57 |
try:
|
|
|
58 |
return pipeline("text2text-generation", model=model_name, device=device)
|
59 |
except Exception as e:
|
60 |
print(f"Error loading grammar model {model_name}: {e}")
|
|
|
74 |
cleaned = clean_text(text)
|
75 |
return cleaned == cleaned[::-1]
|
76 |
|
77 |
+
# Updated prompt instructs the model to output only the palindrome.
|
78 |
def build_prompt(lang):
|
79 |
return (
|
80 |
f"Instruction: Generate a single original palindrome in {lang}.\n"
|
81 |
"Output only the palindrome. The palindrome should be a continuous text that reads the same forward and backward.\n"
|
82 |
+
"Do not output any additional text or commentary.\n"
|
83 |
"Palindrome: "
|
84 |
)
|
85 |
|
|
|
142 |
print(f"CSV saved to {os.path.abspath(csv_path)}")
|
143 |
return gr.Dataframe(df), csv_path
|
144 |
|
145 |
+
# Build the Gradio UI using Blocks for a canvas layout.
|
146 |
with gr.Blocks(title="Premium Model Palindrome Benchmark") as demo:
|
147 |
gr.Markdown("# Premium Model Palindrome Benchmark")
|
148 |
gr.Markdown(
|