Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import copy | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.data import DataLoader | |
import numpy as np | |
from easydict import EasyDict as edict | |
from ..basic import BasicTrainer | |
from ...pipelines import samplers | |
from ...utils.general_utils import dict_reduce | |
from .mixins.classifier_free_guidance import ClassifierFreeGuidanceMixin | |
from .mixins.text_conditioned import TextConditionedMixin | |
from .mixins.image_conditioned import ImageConditionedMixin | |
class FlowMatchingTrainer(BasicTrainer): | |
""" | |
Trainer for diffusion model with flow matching objective. | |
Args: | |
models (dict[str, nn.Module]): Models to train. | |
dataset (torch.utils.data.Dataset): Dataset. | |
output_dir (str): Output directory. | |
load_dir (str): Load directory. | |
step (int): Step to load. | |
batch_size (int): Batch size. | |
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored. | |
batch_split (int): Split batch with gradient accumulation. | |
max_steps (int): Max steps. | |
optimizer (dict): Optimizer config. | |
lr_scheduler (dict): Learning rate scheduler config. | |
elastic (dict): Elastic memory management config. | |
grad_clip (float or dict): Gradient clip config. | |
ema_rate (float or list): Exponential moving average rates. | |
fp16_mode (str): FP16 mode. | |
- None: No FP16. | |
- 'inflat_all': Hold a inflated fp32 master param for all params. | |
- 'amp': Automatic mixed precision. | |
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation. | |
finetune_ckpt (dict): Finetune checkpoint. | |
log_param_stats (bool): Log parameter stats. | |
i_print (int): Print interval. | |
i_log (int): Log interval. | |
i_sample (int): Sample interval. | |
i_save (int): Save interval. | |
i_ddpcheck (int): DDP check interval. | |
t_schedule (dict): Time schedule for flow matching. | |
sigma_min (float): Minimum noise level. | |
""" | |
def __init__( | |
self, | |
*args, | |
t_schedule: dict = { | |
'name': 'logitNormal', | |
'args': { | |
'mean': 0.0, | |
'std': 1.0, | |
} | |
}, | |
sigma_min: float = 1e-5, | |
**kwargs | |
): | |
super().__init__(*args, **kwargs) | |
self.t_schedule = t_schedule | |
self.sigma_min = sigma_min | |
def diffuse(self, x_0: torch.Tensor, t: torch.Tensor, noise: Optional[torch.Tensor] = None) -> torch.Tensor: | |
""" | |
Diffuse the data for a given number of diffusion steps. | |
In other words, sample from q(x_t | x_0). | |
Args: | |
x_0: The [N x C x ...] tensor of noiseless inputs. | |
t: The [N] tensor of diffusion steps [0-1]. | |
noise: If specified, use this noise instead of generating new noise. | |
Returns: | |
x_t, the noisy version of x_0 under timestep t. | |
""" | |
if noise is None: | |
noise = torch.randn_like(x_0) | |
assert noise.shape == x_0.shape, "noise must have same shape as x_0" | |
t = t.view(-1, *[1 for _ in range(len(x_0.shape) - 1)]) | |
x_t = (1 - t) * x_0 + (self.sigma_min + (1 - self.sigma_min) * t) * noise | |
return x_t | |
def reverse_diffuse(self, x_t: torch.Tensor, t: torch.Tensor, noise: torch.Tensor) -> torch.Tensor: | |
""" | |
Get original image from noisy version under timestep t. | |
""" | |
assert noise.shape == x_t.shape, "noise must have same shape as x_t" | |
t = t.view(-1, *[1 for _ in range(len(x_t.shape) - 1)]) | |
x_0 = (x_t - (self.sigma_min + (1 - self.sigma_min) * t) * noise) / (1 - t) | |
return x_0 | |
def get_v(self, x_0: torch.Tensor, noise: torch.Tensor, t: torch.Tensor) -> torch.Tensor: | |
""" | |
Compute the velocity of the diffusion process at time t. | |
""" | |
return (1 - self.sigma_min) * noise - x_0 | |
def get_cond(self, cond, **kwargs): | |
""" | |
Get the conditioning data. | |
""" | |
return cond | |
def get_inference_cond(self, cond, **kwargs): | |
""" | |
Get the conditioning data for inference. | |
""" | |
return {'cond': cond, **kwargs} | |
def get_sampler(self, **kwargs) -> samplers.FlowEulerSampler: | |
""" | |
Get the sampler for the diffusion process. | |
""" | |
return samplers.FlowEulerSampler(self.sigma_min) | |
def vis_cond(self, **kwargs): | |
""" | |
Visualize the conditioning data. | |
""" | |
return {} | |
def sample_t(self, batch_size: int) -> torch.Tensor: | |
""" | |
Sample timesteps. | |
""" | |
if self.t_schedule['name'] == 'uniform': | |
t = torch.rand(batch_size) | |
elif self.t_schedule['name'] == 'logitNormal': | |
mean = self.t_schedule['args']['mean'] | |
std = self.t_schedule['args']['std'] | |
t = torch.sigmoid(torch.randn(batch_size) * std + mean) | |
else: | |
raise ValueError(f"Unknown t_schedule: {self.t_schedule['name']}") | |
return t | |
def training_losses( | |
self, | |
x_0: torch.Tensor, | |
cond=None, | |
**kwargs | |
) -> Tuple[Dict, Dict]: | |
""" | |
Compute training losses for a single timestep. | |
Args: | |
x_0: The [N x C x ...] tensor of noiseless inputs. | |
cond: The [N x ...] tensor of additional conditions. | |
kwargs: Additional arguments to pass to the backbone. | |
Returns: | |
a dict with the key "loss" containing a tensor of shape [N]. | |
may also contain other keys for different terms. | |
""" | |
noise = torch.randn_like(x_0) | |
t = self.sample_t(x_0.shape[0]).to(x_0.device).float() | |
x_t = self.diffuse(x_0, t, noise=noise) | |
cond = self.get_cond(cond, **kwargs) | |
pred = self.training_models['denoiser'](x_t, t * 1000, cond, **kwargs) | |
assert pred.shape == noise.shape == x_0.shape | |
target = self.get_v(x_0, noise, t) | |
terms = edict() | |
terms["mse"] = F.mse_loss(pred, target) | |
terms["loss"] = terms["mse"] | |
# log loss with time bins | |
mse_per_instance = np.array([ | |
F.mse_loss(pred[i], target[i]).item() | |
for i in range(x_0.shape[0]) | |
]) | |
time_bin = np.digitize(t.cpu().numpy(), np.linspace(0, 1, 11)) - 1 | |
for i in range(10): | |
if (time_bin == i).sum() != 0: | |
terms[f"bin_{i}"] = {"mse": mse_per_instance[time_bin == i].mean()} | |
return terms, {} | |
def run_snapshot( | |
self, | |
num_samples: int, | |
batch_size: int, | |
verbose: bool = False, | |
) -> Dict: | |
dataloader = DataLoader( | |
copy.deepcopy(self.dataset), | |
batch_size=batch_size, | |
shuffle=True, | |
num_workers=0, | |
collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None, | |
) | |
# inference | |
sampler = self.get_sampler() | |
sample_gt = [] | |
sample = [] | |
cond_vis = [] | |
for i in range(0, num_samples, batch_size): | |
batch = min(batch_size, num_samples - i) | |
data = next(iter(dataloader)) | |
data = {k: v[:batch].cuda() if isinstance(v, torch.Tensor) else v[:batch] for k, v in data.items()} | |
noise = torch.randn_like(data['x_0']) | |
sample_gt.append(data['x_0']) | |
cond_vis.append(self.vis_cond(**data)) | |
del data['x_0'] | |
args = self.get_inference_cond(**data) | |
res = sampler.sample( | |
self.models['denoiser'], | |
noise=noise, | |
**args, | |
steps=50, cfg_strength=3.0, verbose=verbose, | |
) | |
sample.append(res.samples) | |
sample_gt = torch.cat(sample_gt, dim=0) | |
sample = torch.cat(sample, dim=0) | |
sample_dict = { | |
'sample_gt': {'value': sample_gt, 'type': 'sample'}, | |
'sample': {'value': sample, 'type': 'sample'}, | |
} | |
sample_dict.update(dict_reduce(cond_vis, None, { | |
'value': lambda x: torch.cat(x, dim=0), | |
'type': lambda x: x[0], | |
})) | |
return sample_dict | |
class FlowMatchingCFGTrainer(ClassifierFreeGuidanceMixin, FlowMatchingTrainer): | |
""" | |
Trainer for diffusion model with flow matching objective and classifier-free guidance. | |
Args: | |
models (dict[str, nn.Module]): Models to train. | |
dataset (torch.utils.data.Dataset): Dataset. | |
output_dir (str): Output directory. | |
load_dir (str): Load directory. | |
step (int): Step to load. | |
batch_size (int): Batch size. | |
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored. | |
batch_split (int): Split batch with gradient accumulation. | |
max_steps (int): Max steps. | |
optimizer (dict): Optimizer config. | |
lr_scheduler (dict): Learning rate scheduler config. | |
elastic (dict): Elastic memory management config. | |
grad_clip (float or dict): Gradient clip config. | |
ema_rate (float or list): Exponential moving average rates. | |
fp16_mode (str): FP16 mode. | |
- None: No FP16. | |
- 'inflat_all': Hold a inflated fp32 master param for all params. | |
- 'amp': Automatic mixed precision. | |
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation. | |
finetune_ckpt (dict): Finetune checkpoint. | |
log_param_stats (bool): Log parameter stats. | |
i_print (int): Print interval. | |
i_log (int): Log interval. | |
i_sample (int): Sample interval. | |
i_save (int): Save interval. | |
i_ddpcheck (int): DDP check interval. | |
t_schedule (dict): Time schedule for flow matching. | |
sigma_min (float): Minimum noise level. | |
p_uncond (float): Probability of dropping conditions. | |
""" | |
pass | |
class TextConditionedFlowMatchingCFGTrainer(TextConditionedMixin, FlowMatchingCFGTrainer): | |
""" | |
Trainer for text-conditioned diffusion model with flow matching objective and classifier-free guidance. | |
Args: | |
models (dict[str, nn.Module]): Models to train. | |
dataset (torch.utils.data.Dataset): Dataset. | |
output_dir (str): Output directory. | |
load_dir (str): Load directory. | |
step (int): Step to load. | |
batch_size (int): Batch size. | |
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored. | |
batch_split (int): Split batch with gradient accumulation. | |
max_steps (int): Max steps. | |
optimizer (dict): Optimizer config. | |
lr_scheduler (dict): Learning rate scheduler config. | |
elastic (dict): Elastic memory management config. | |
grad_clip (float or dict): Gradient clip config. | |
ema_rate (float or list): Exponential moving average rates. | |
fp16_mode (str): FP16 mode. | |
- None: No FP16. | |
- 'inflat_all': Hold a inflated fp32 master param for all params. | |
- 'amp': Automatic mixed precision. | |
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation. | |
finetune_ckpt (dict): Finetune checkpoint. | |
log_param_stats (bool): Log parameter stats. | |
i_print (int): Print interval. | |
i_log (int): Log interval. | |
i_sample (int): Sample interval. | |
i_save (int): Save interval. | |
i_ddpcheck (int): DDP check interval. | |
t_schedule (dict): Time schedule for flow matching. | |
sigma_min (float): Minimum noise level. | |
p_uncond (float): Probability of dropping conditions. | |
text_cond_model(str): Text conditioning model. | |
""" | |
pass | |
class ImageConditionedFlowMatchingCFGTrainer(ImageConditionedMixin, FlowMatchingCFGTrainer): | |
""" | |
Trainer for image-conditioned diffusion model with flow matching objective and classifier-free guidance. | |
Args: | |
models (dict[str, nn.Module]): Models to train. | |
dataset (torch.utils.data.Dataset): Dataset. | |
output_dir (str): Output directory. | |
load_dir (str): Load directory. | |
step (int): Step to load. | |
batch_size (int): Batch size. | |
batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored. | |
batch_split (int): Split batch with gradient accumulation. | |
max_steps (int): Max steps. | |
optimizer (dict): Optimizer config. | |
lr_scheduler (dict): Learning rate scheduler config. | |
elastic (dict): Elastic memory management config. | |
grad_clip (float or dict): Gradient clip config. | |
ema_rate (float or list): Exponential moving average rates. | |
fp16_mode (str): FP16 mode. | |
- None: No FP16. | |
- 'inflat_all': Hold a inflated fp32 master param for all params. | |
- 'amp': Automatic mixed precision. | |
fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation. | |
finetune_ckpt (dict): Finetune checkpoint. | |
log_param_stats (bool): Log parameter stats. | |
i_print (int): Print interval. | |
i_log (int): Log interval. | |
i_sample (int): Sample interval. | |
i_save (int): Save interval. | |
i_ddpcheck (int): DDP check interval. | |
t_schedule (dict): Time schedule for flow matching. | |
sigma_min (float): Minimum noise level. | |
p_uncond (float): Probability of dropping conditions. | |
image_cond_model (str): Image conditioning model. | |
""" | |
pass | |