TRELLIS_TextTo3D / trellis /datasets /structured_latent2render.py
junbiao.chen
Trellis update
cc0c59d
import os
from PIL import Image
import json
import numpy as np
import torch
import utils3d.torch
from ..modules.sparse.basic import SparseTensor
from .components import StandardDatasetBase
class SLat2Render(StandardDatasetBase):
"""
Dataset for Structured Latent and rendered images.
Args:
roots (str): paths to the dataset
image_size (int): size of the image
latent_model (str): latent model name
min_aesthetic_score (float): minimum aesthetic score
max_num_voxels (int): maximum number of voxels
"""
def __init__(
self,
roots: str,
image_size: int,
latent_model: str,
min_aesthetic_score: float = 5.0,
max_num_voxels: int = 32768,
):
self.image_size = image_size
self.latent_model = latent_model
self.min_aesthetic_score = min_aesthetic_score
self.max_num_voxels = max_num_voxels
self.value_range = (0, 1)
super().__init__(roots)
def filter_metadata(self, metadata):
stats = {}
metadata = metadata[metadata[f'latent_{self.latent_model}']]
stats['With latent'] = len(metadata)
metadata = metadata[metadata['aesthetic_score'] >= self.min_aesthetic_score]
stats[f'Aesthetic score >= {self.min_aesthetic_score}'] = len(metadata)
metadata = metadata[metadata['num_voxels'] <= self.max_num_voxels]
stats[f'Num voxels <= {self.max_num_voxels}'] = len(metadata)
return metadata, stats
def _get_image(self, root, instance):
with open(os.path.join(root, 'renders', instance, 'transforms.json')) as f:
metadata = json.load(f)
n_views = len(metadata['frames'])
view = np.random.randint(n_views)
metadata = metadata['frames'][view]
fov = metadata['camera_angle_x']
intrinsics = utils3d.torch.intrinsics_from_fov_xy(torch.tensor(fov), torch.tensor(fov))
c2w = torch.tensor(metadata['transform_matrix'])
c2w[:3, 1:3] *= -1
extrinsics = torch.inverse(c2w)
image_path = os.path.join(root, 'renders', instance, metadata['file_path'])
image = Image.open(image_path)
alpha = image.getchannel(3)
image = image.convert('RGB')
image = image.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
alpha = alpha.resize((self.image_size, self.image_size), Image.Resampling.LANCZOS)
image = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0
alpha = torch.tensor(np.array(alpha)).float() / 255.0
return {
'image': image,
'alpha': alpha,
'extrinsics': extrinsics,
'intrinsics': intrinsics,
}
def _get_latent(self, root, instance):
data = np.load(os.path.join(root, 'latents', self.latent_model, f'{instance}.npz'))
coords = torch.tensor(data['coords']).int()
feats = torch.tensor(data['feats']).float()
return {
'coords': coords,
'feats': feats,
}
@torch.no_grad()
def visualize_sample(self, sample: dict):
return sample['image']
@staticmethod
def collate_fn(batch):
pack = {}
coords = []
for i, b in enumerate(batch):
coords.append(torch.cat([torch.full((b['coords'].shape[0], 1), i, dtype=torch.int32), b['coords']], dim=-1))
coords = torch.cat(coords)
feats = torch.cat([b['feats'] for b in batch])
pack['latents'] = SparseTensor(
coords=coords,
feats=feats,
)
# collate other data
keys = [k for k in batch[0].keys() if k not in ['coords', 'feats']]
for k in keys:
if isinstance(batch[0][k], torch.Tensor):
pack[k] = torch.stack([b[k] for b in batch])
elif isinstance(batch[0][k], list):
pack[k] = sum([b[k] for b in batch], [])
else:
pack[k] = [b[k] for b in batch]
return pack
def get_instance(self, root, instance):
image = self._get_image(root, instance)
latent = self._get_latent(root, instance)
return {
**image,
**latent,
}
class Slat2RenderGeo(SLat2Render):
def __init__(
self,
roots: str,
image_size: int,
latent_model: str,
min_aesthetic_score: float = 5.0,
max_num_voxels: int = 32768,
):
super().__init__(
roots,
image_size,
latent_model,
min_aesthetic_score,
max_num_voxels,
)
def _get_geo(self, root, instance):
verts, face = utils3d.io.read_ply(os.path.join(root, 'renders', instance, 'mesh.ply'))
mesh = {
"vertices" : torch.from_numpy(verts),
"faces" : torch.from_numpy(face),
}
return {
"mesh" : mesh,
}
def get_instance(self, root, instance):
image = self._get_image(root, instance)
latent = self._get_latent(root, instance)
geo = self._get_geo(root, instance)
return {
**image,
**latent,
**geo,
}