Spaces:
Running
on
Zero
Running
on
Zero
torch::Tensor | |
z_order_encode( | |
const torch::Tensor& x, | |
const torch::Tensor& y, | |
const torch::Tensor& z | |
) { | |
// Allocate output tensor | |
torch::Tensor codes = torch::empty_like(x); | |
// Call CUDA kernel | |
z_order_encode_cuda<<<(x.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
x.size(0), | |
reinterpret_cast<uint32_t*>(x.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(y.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(z.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(codes.data_ptr<int>()) | |
); | |
return codes; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> | |
z_order_decode( | |
const torch::Tensor& codes | |
) { | |
// Allocate output tensors | |
torch::Tensor x = torch::empty_like(codes); | |
torch::Tensor y = torch::empty_like(codes); | |
torch::Tensor z = torch::empty_like(codes); | |
// Call CUDA kernel | |
z_order_decode_cuda<<<(codes.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
codes.size(0), | |
reinterpret_cast<uint32_t*>(codes.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(x.data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(y.data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(z.data_ptr<int>()) | |
); | |
return std::make_tuple(x, y, z); | |
} | |
torch::Tensor | |
hilbert_encode( | |
const torch::Tensor& x, | |
const torch::Tensor& y, | |
const torch::Tensor& z | |
) { | |
// Allocate output tensor | |
torch::Tensor codes = torch::empty_like(x); | |
// Call CUDA kernel | |
hilbert_encode_cuda<<<(x.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
x.size(0), | |
reinterpret_cast<uint32_t*>(x.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(y.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(z.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(codes.data_ptr<int>()) | |
); | |
return codes; | |
} | |
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> | |
hilbert_decode( | |
const torch::Tensor& codes | |
) { | |
// Allocate output tensors | |
torch::Tensor x = torch::empty_like(codes); | |
torch::Tensor y = torch::empty_like(codes); | |
torch::Tensor z = torch::empty_like(codes); | |
// Call CUDA kernel | |
hilbert_decode_cuda<<<(codes.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>( | |
codes.size(0), | |
reinterpret_cast<uint32_t*>(codes.contiguous().data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(x.data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(y.data_ptr<int>()), | |
reinterpret_cast<uint32_t*>(z.data_ptr<int>()) | |
); | |
return std::make_tuple(x, y, z); | |
} | |