File size: 11,599 Bytes
cc0c59d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from typing import *
import os
import copy
import functools
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from easydict import EasyDict as edict

from ...modules import sparse as sp
from ...utils.general_utils import dict_reduce
from ...utils.data_utils import cycle, BalancedResumableSampler
from .flow_matching import FlowMatchingTrainer
from .mixins.classifier_free_guidance import ClassifierFreeGuidanceMixin
from .mixins.text_conditioned import TextConditionedMixin
from .mixins.image_conditioned import ImageConditionedMixin


class SparseFlowMatchingTrainer(FlowMatchingTrainer):
    """
    Trainer for sparse diffusion model with flow matching objective.
    
    Args:
        models (dict[str, nn.Module]): Models to train.
        dataset (torch.utils.data.Dataset): Dataset.
        output_dir (str): Output directory.
        load_dir (str): Load directory.
        step (int): Step to load.
        batch_size (int): Batch size.
        batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
        batch_split (int): Split batch with gradient accumulation.
        max_steps (int): Max steps.
        optimizer (dict): Optimizer config.
        lr_scheduler (dict): Learning rate scheduler config.
        elastic (dict): Elastic memory management config.
        grad_clip (float or dict): Gradient clip config.
        ema_rate (float or list): Exponential moving average rates.
        fp16_mode (str): FP16 mode.
            - None: No FP16.
            - 'inflat_all': Hold a inflated fp32 master param for all params.
            - 'amp': Automatic mixed precision.
        fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
        finetune_ckpt (dict): Finetune checkpoint.
        log_param_stats (bool): Log parameter stats.
        i_print (int): Print interval.
        i_log (int): Log interval.
        i_sample (int): Sample interval.
        i_save (int): Save interval.
        i_ddpcheck (int): DDP check interval.

        t_schedule (dict): Time schedule for flow matching.
        sigma_min (float): Minimum noise level.
    """
    
    def prepare_dataloader(self, **kwargs):
        """
        Prepare dataloader.
        """
        self.data_sampler = BalancedResumableSampler(
            self.dataset,
            shuffle=True,
            batch_size=self.batch_size_per_gpu,
        )
        self.dataloader = DataLoader(
            self.dataset,
            batch_size=self.batch_size_per_gpu,
            num_workers=int(np.ceil(os.cpu_count() / torch.cuda.device_count())),
            pin_memory=True,
            drop_last=True,
            persistent_workers=True,
            collate_fn=functools.partial(self.dataset.collate_fn, split_size=self.batch_split),
            sampler=self.data_sampler,
        )
        self.data_iterator = cycle(self.dataloader)
        
    def training_losses(
        self,
        x_0: sp.SparseTensor,
        cond=None,
        **kwargs
    ) -> Tuple[Dict, Dict]:
        """
        Compute training losses for a single timestep.

        Args:
            x_0: The [N x ... x C] sparse tensor of the inputs.
            cond: The [N x ...] tensor of additional conditions.
            kwargs: Additional arguments to pass to the backbone.

        Returns:
            a dict with the key "loss" containing a tensor of shape [N].
            may also contain other keys for different terms.
        """
        noise = x_0.replace(torch.randn_like(x_0.feats))
        t = self.sample_t(x_0.shape[0]).to(x_0.device).float()
        x_t = self.diffuse(x_0, t, noise=noise)
        cond = self.get_cond(cond, **kwargs)
        
        pred = self.training_models['denoiser'](x_t, t * 1000, cond, **kwargs)
        assert pred.shape == noise.shape == x_0.shape
        target = self.get_v(x_0, noise, t)
        terms = edict()
        terms["mse"] = F.mse_loss(pred.feats, target.feats)
        terms["loss"] = terms["mse"]

        # log loss with time bins
        mse_per_instance = np.array([
            F.mse_loss(pred.feats[x_0.layout[i]], target.feats[x_0.layout[i]]).item()
            for i in range(x_0.shape[0])
        ])
        time_bin = np.digitize(t.cpu().numpy(), np.linspace(0, 1, 11)) - 1
        for i in range(10):
            if (time_bin == i).sum() != 0:
                terms[f"bin_{i}"] = {"mse": mse_per_instance[time_bin == i].mean()}

        return terms, {}
    
    @torch.no_grad()
    def run_snapshot(
        self,
        num_samples: int,
        batch_size: int,
        verbose: bool = False,
    ) -> Dict:
        dataloader = DataLoader(
            copy.deepcopy(self.dataset),
            batch_size=batch_size,
            shuffle=True,
            num_workers=0,
            collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None,
        )

        # inference
        sampler = self.get_sampler()
        sample_gt = []
        sample = []
        cond_vis = []
        for i in range(0, num_samples, batch_size):
            batch = min(batch_size, num_samples - i)
            data = next(iter(dataloader))
            data = {k: v[:batch].cuda() if not isinstance(v, list) else v[:batch] for k, v in data.items()}
            noise = data['x_0'].replace(torch.randn_like(data['x_0'].feats))
            sample_gt.append(data['x_0'])
            cond_vis.append(self.vis_cond(**data))
            del data['x_0']
            args = self.get_inference_cond(**data)
            res = sampler.sample(
                self.models['denoiser'],
                noise=noise,
                **args,
                steps=50, cfg_strength=3.0, verbose=verbose,
            )
            sample.append(res.samples)

        sample_gt = sp.sparse_cat(sample_gt)
        sample = sp.sparse_cat(sample)
        sample_dict = {
            'sample_gt': {'value': sample_gt, 'type': 'sample'},
            'sample': {'value': sample, 'type': 'sample'},
        }
        sample_dict.update(dict_reduce(cond_vis, None, {
            'value': lambda x: torch.cat(x, dim=0),
            'type': lambda x: x[0],
        }))
        
        return sample_dict


class SparseFlowMatchingCFGTrainer(ClassifierFreeGuidanceMixin, SparseFlowMatchingTrainer):
    """
    Trainer for sparse diffusion model with flow matching objective and classifier-free guidance.
    
    Args:
        models (dict[str, nn.Module]): Models to train.
        dataset (torch.utils.data.Dataset): Dataset.
        output_dir (str): Output directory.
        load_dir (str): Load directory.
        step (int): Step to load.
        batch_size (int): Batch size.
        batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
        batch_split (int): Split batch with gradient accumulation.
        max_steps (int): Max steps.
        optimizer (dict): Optimizer config.
        lr_scheduler (dict): Learning rate scheduler config.
        elastic (dict): Elastic memory management config.
        grad_clip (float or dict): Gradient clip config.
        ema_rate (float or list): Exponential moving average rates.
        fp16_mode (str): FP16 mode.
            - None: No FP16.
            - 'inflat_all': Hold a inflated fp32 master param for all params.
            - 'amp': Automatic mixed precision.
        fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
        finetune_ckpt (dict): Finetune checkpoint.
        log_param_stats (bool): Log parameter stats.
        i_print (int): Print interval.
        i_log (int): Log interval.
        i_sample (int): Sample interval.
        i_save (int): Save interval.
        i_ddpcheck (int): DDP check interval.

        t_schedule (dict): Time schedule for flow matching.
        sigma_min (float): Minimum noise level.
        p_uncond (float): Probability of dropping conditions.
    """
    pass


class TextConditionedSparseFlowMatchingCFGTrainer(TextConditionedMixin, SparseFlowMatchingCFGTrainer):
    """
    Trainer for sparse text-conditioned diffusion model with flow matching objective and classifier-free guidance.
    
    Args:
        models (dict[str, nn.Module]): Models to train.
        dataset (torch.utils.data.Dataset): Dataset.
        output_dir (str): Output directory.
        load_dir (str): Load directory.
        step (int): Step to load.
        batch_size (int): Batch size.
        batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
        batch_split (int): Split batch with gradient accumulation.
        max_steps (int): Max steps.
        optimizer (dict): Optimizer config.
        lr_scheduler (dict): Learning rate scheduler config.
        elastic (dict): Elastic memory management config.
        grad_clip (float or dict): Gradient clip config.
        ema_rate (float or list): Exponential moving average rates.
        fp16_mode (str): FP16 mode.
            - None: No FP16.
            - 'inflat_all': Hold a inflated fp32 master param for all params.
            - 'amp': Automatic mixed precision.
        fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
        finetune_ckpt (dict): Finetune checkpoint.
        log_param_stats (bool): Log parameter stats.
        i_print (int): Print interval.
        i_log (int): Log interval.
        i_sample (int): Sample interval.
        i_save (int): Save interval.
        i_ddpcheck (int): DDP check interval.

        t_schedule (dict): Time schedule for flow matching.
        sigma_min (float): Minimum noise level.
        p_uncond (float): Probability of dropping conditions.
        text_cond_model(str): Text conditioning model.
    """
    pass


class ImageConditionedSparseFlowMatchingCFGTrainer(ImageConditionedMixin, SparseFlowMatchingCFGTrainer):
    """
    Trainer for sparse image-conditioned diffusion model with flow matching objective and classifier-free guidance.
    
    Args:
        models (dict[str, nn.Module]): Models to train.
        dataset (torch.utils.data.Dataset): Dataset.
        output_dir (str): Output directory.
        load_dir (str): Load directory.
        step (int): Step to load.
        batch_size (int): Batch size.
        batch_size_per_gpu (int): Batch size per GPU. If specified, batch_size will be ignored.
        batch_split (int): Split batch with gradient accumulation.
        max_steps (int): Max steps.
        optimizer (dict): Optimizer config.
        lr_scheduler (dict): Learning rate scheduler config.
        elastic (dict): Elastic memory management config.
        grad_clip (float or dict): Gradient clip config.
        ema_rate (float or list): Exponential moving average rates.
        fp16_mode (str): FP16 mode.
            - None: No FP16.
            - 'inflat_all': Hold a inflated fp32 master param for all params.
            - 'amp': Automatic mixed precision.
        fp16_scale_growth (float): Scale growth for FP16 gradient backpropagation.
        finetune_ckpt (dict): Finetune checkpoint.
        log_param_stats (bool): Log parameter stats.
        i_print (int): Print interval.
        i_log (int): Log interval.
        i_sample (int): Sample interval.
        i_save (int): Save interval.
        i_ddpcheck (int): DDP check interval.

        t_schedule (dict): Time schedule for flow matching.
        sigma_min (float): Minimum noise level.
        p_uncond (float): Probability of dropping conditions.
        image_cond_model (str): Image conditioning model.
    """
    pass