File size: 15,515 Bytes
cc0c59d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
from abc import abstractmethod
import os
import time
import json

import torch
import torch.distributed as dist
from torch.utils.data import DataLoader
import numpy as np

from torchvision import utils
from torch.utils.tensorboard import SummaryWriter

from .utils import *
from ..utils.general_utils import *
from ..utils.data_utils import recursive_to_device, cycle, ResumableSampler


class Trainer:
    """
    Base class for training.
    """
    def __init__(self,
        models,
        dataset,
        *,
        output_dir,
        load_dir,
        step,
        max_steps,
        batch_size=None,
        batch_size_per_gpu=None,
        batch_split=None,
        optimizer={},
        lr_scheduler=None,
        elastic=None,
        grad_clip=None,
        ema_rate=0.9999,
        fp16_mode='inflat_all',
        fp16_scale_growth=1e-3,
        finetune_ckpt=None,
        log_param_stats=False,
        prefetch_data=True,
        i_print=1000,
        i_log=500,
        i_sample=10000,
        i_save=10000,
        i_ddpcheck=10000,
        **kwargs
    ):
        assert batch_size is not None or batch_size_per_gpu is not None, 'Either batch_size or batch_size_per_gpu must be specified.'

        self.models = models
        self.dataset = dataset
        self.batch_split = batch_split if batch_split is not None else 1
        self.max_steps = max_steps
        self.optimizer_config = optimizer
        self.lr_scheduler_config = lr_scheduler
        self.elastic_controller_config = elastic
        self.grad_clip = grad_clip
        self.ema_rate = [ema_rate] if isinstance(ema_rate, float) else ema_rate
        self.fp16_mode = fp16_mode
        self.fp16_scale_growth = fp16_scale_growth
        self.log_param_stats = log_param_stats
        self.prefetch_data = prefetch_data
        if self.prefetch_data:
            self._data_prefetched = None

        self.output_dir = output_dir
        self.i_print = i_print
        self.i_log = i_log
        self.i_sample = i_sample
        self.i_save = i_save
        self.i_ddpcheck = i_ddpcheck        

        if dist.is_initialized():
            # Multi-GPU params
            self.world_size = dist.get_world_size()
            self.rank = dist.get_rank()
            self.local_rank = dist.get_rank() % torch.cuda.device_count()
            self.is_master = self.rank == 0
        else:
            # Single-GPU params
            self.world_size = 1
            self.rank = 0
            self.local_rank = 0
            self.is_master = True

        self.batch_size = batch_size if batch_size_per_gpu is None else batch_size_per_gpu * self.world_size
        self.batch_size_per_gpu = batch_size_per_gpu if batch_size_per_gpu is not None else batch_size // self.world_size
        assert self.batch_size % self.world_size == 0, 'Batch size must be divisible by the number of GPUs.'
        assert self.batch_size_per_gpu % self.batch_split == 0, 'Batch size per GPU must be divisible by batch split.'

        self.init_models_and_more(**kwargs)
        self.prepare_dataloader(**kwargs)
        
        # Load checkpoint
        self.step = 0
        if load_dir is not None and step is not None:
            self.load(load_dir, step)
        elif finetune_ckpt is not None:
            self.finetune_from(finetune_ckpt)
        
        if self.is_master:
            os.makedirs(os.path.join(self.output_dir, 'ckpts'), exist_ok=True)
            os.makedirs(os.path.join(self.output_dir, 'samples'), exist_ok=True)
            self.writer = SummaryWriter(os.path.join(self.output_dir, 'tb_logs'))

        if self.world_size > 1:
            self.check_ddp()
            
        if self.is_master:
            print('\n\nTrainer initialized.')
            print(self)
            
    @property
    def device(self):
        for _, model in self.models.items():
            if hasattr(model, 'device'):
                return model.device
        return next(list(self.models.values())[0].parameters()).device
            
    @abstractmethod
    def init_models_and_more(self, **kwargs):
        """
        Initialize models and more.
        """
        pass
    
    def prepare_dataloader(self, **kwargs):
        """
        Prepare dataloader.
        """
        self.data_sampler = ResumableSampler(
            self.dataset,
            shuffle=True,
        )
        self.dataloader = DataLoader(
            self.dataset,
            batch_size=self.batch_size_per_gpu,
            num_workers=int(np.ceil(os.cpu_count() / torch.cuda.device_count())),
            pin_memory=True,
            drop_last=True,
            persistent_workers=True,
            collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None,
            sampler=self.data_sampler,
        )
        self.data_iterator = cycle(self.dataloader)

    @abstractmethod
    def load(self, load_dir, step=0):
        """
        Load a checkpoint.
        Should be called by all processes.
        """
        pass

    @abstractmethod
    def save(self):
        """
        Save a checkpoint.
        Should be called only by the rank 0 process.
        """
        pass
    
    @abstractmethod
    def finetune_from(self, finetune_ckpt):
        """
        Finetune from a checkpoint.
        Should be called by all processes.
        """
        pass
    
    @abstractmethod
    def run_snapshot(self, num_samples, batch_size=4, verbose=False, **kwargs):
        """
        Run a snapshot of the model.
        """
        pass

    @torch.no_grad()
    def visualize_sample(self, sample):
        """
        Convert a sample to an image.
        """
        if hasattr(self.dataset, 'visualize_sample'):
            return self.dataset.visualize_sample(sample)
        else:
            return sample

    @torch.no_grad()
    def snapshot_dataset(self, num_samples=100):
        """
        Sample images from the dataset.
        """
        dataloader = torch.utils.data.DataLoader(
            self.dataset,
            batch_size=num_samples,
            num_workers=0,
            shuffle=True,
            collate_fn=self.dataset.collate_fn if hasattr(self.dataset, 'collate_fn') else None,
        )
        data = next(iter(dataloader))
        data = recursive_to_device(data, self.device)
        vis = self.visualize_sample(data)
        if isinstance(vis, dict):
            save_cfg = [(f'dataset_{k}', v) for k, v in vis.items()]
        else:
            save_cfg = [('dataset', vis)]
        for name, image in save_cfg:
            utils.save_image(
                image,
                os.path.join(self.output_dir, 'samples', f'{name}.jpg'),
                nrow=int(np.sqrt(num_samples)),
                normalize=True,
                value_range=self.dataset.value_range,
            )

    @torch.no_grad()
    def snapshot(self, suffix=None, num_samples=64, batch_size=4, verbose=False):
        """
        Sample images from the model.
        NOTE: This function should be called by all processes.
        """
        if self.is_master:
            print(f'\nSampling {num_samples} images...', end='')

        if suffix is None:
            suffix = f'step{self.step:07d}'

        # Assign tasks
        num_samples_per_process = int(np.ceil(num_samples / self.world_size))
        samples = self.run_snapshot(num_samples_per_process, batch_size=batch_size, verbose=verbose)

        # Preprocess images
        for key in list(samples.keys()):
            if samples[key]['type'] == 'sample':
                vis = self.visualize_sample(samples[key]['value'])
                if isinstance(vis, dict):
                    for k, v in vis.items():
                        samples[f'{key}_{k}'] = {'value': v, 'type': 'image'}
                    del samples[key]
                else:
                    samples[key] = {'value': vis, 'type': 'image'}

        # Gather results
        if self.world_size > 1:
            for key in samples.keys():
                samples[key]['value'] = samples[key]['value'].contiguous()
                if self.is_master:
                    all_images = [torch.empty_like(samples[key]['value']) for _ in range(self.world_size)]
                else:
                    all_images = []
                dist.gather(samples[key]['value'], all_images, dst=0)
                if self.is_master:
                    samples[key]['value'] = torch.cat(all_images, dim=0)[:num_samples]

        # Save images
        if self.is_master:
            os.makedirs(os.path.join(self.output_dir, 'samples', suffix), exist_ok=True)
            for key in samples.keys():
                if samples[key]['type'] == 'image':
                    utils.save_image(
                        samples[key]['value'],
                        os.path.join(self.output_dir, 'samples', suffix, f'{key}_{suffix}.jpg'),
                        nrow=int(np.sqrt(num_samples)),
                        normalize=True,
                        value_range=self.dataset.value_range,
                    )
                elif samples[key]['type'] == 'number':
                    min = samples[key]['value'].min()
                    max = samples[key]['value'].max()
                    images = (samples[key]['value'] - min) / (max - min)
                    images = utils.make_grid(
                        images,
                        nrow=int(np.sqrt(num_samples)),
                        normalize=False,
                    )
                    save_image_with_notes(
                        images,
                        os.path.join(self.output_dir, 'samples', suffix, f'{key}_{suffix}.jpg'),
                        notes=f'{key} min: {min}, max: {max}',
                    )

        if self.is_master:
            print(' Done.')

    @abstractmethod
    def update_ema(self):
        """
        Update exponential moving average.
        Should only be called by the rank 0 process.
        """
        pass

    @abstractmethod
    def check_ddp(self):
        """
        Check if DDP is working properly.
        Should be called by all process.
        """
        pass

    @abstractmethod
    def training_losses(**mb_data):
        """
        Compute training losses.
        """
        pass
    
    def load_data(self):
        """
        Load data.
        """
        if self.prefetch_data:
            if self._data_prefetched is None:
                self._data_prefetched = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True)
            data = self._data_prefetched
            self._data_prefetched = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True)
        else:
            data = recursive_to_device(next(self.data_iterator), self.device, non_blocking=True)
        
        # if the data is a dict, we need to split it into multiple dicts with batch_size_per_gpu
        if isinstance(data, dict):
            if self.batch_split == 1:
                data_list = [data]
            else:
                batch_size = list(data.values())[0].shape[0]
                data_list = [
                    {k: v[i * batch_size // self.batch_split:(i + 1) * batch_size // self.batch_split] for k, v in data.items()}
                    for i in range(self.batch_split)
                ]
        elif isinstance(data, list):
            data_list = data
        else:
            raise ValueError('Data must be a dict or a list of dicts.')
        
        return data_list

    @abstractmethod
    def run_step(self, data_list):
        """
        Run a training step.
        """
        pass

    def run(self):
        """
        Run training.
        """
        if self.is_master:
            print('\nStarting training...')
            self.snapshot_dataset()
        if self.step == 0:
            self.snapshot(suffix='init')
        else: # resume
            self.snapshot(suffix=f'resume_step{self.step:07d}')

        log = []
        time_last_print = 0.0
        time_elapsed = 0.0
        while self.step < self.max_steps:
            time_start = time.time()

            data_list = self.load_data()
            step_log = self.run_step(data_list)

            time_end = time.time()
            time_elapsed += time_end - time_start

            self.step += 1

            # Print progress
            if self.is_master and self.step % self.i_print == 0:
                speed = self.i_print / (time_elapsed - time_last_print) * 3600
                columns = [
                    f'Step: {self.step}/{self.max_steps} ({self.step / self.max_steps * 100:.2f}%)',
                    f'Elapsed: {time_elapsed / 3600:.2f} h',
                    f'Speed: {speed:.2f} steps/h',
                    f'ETA: {(self.max_steps - self.step) / speed:.2f} h',
                ]
                print(' | '.join([c.ljust(25) for c in columns]), flush=True)
                time_last_print = time_elapsed

            # Check ddp
            if self.world_size > 1 and self.i_ddpcheck is not None and self.step % self.i_ddpcheck == 0:
                self.check_ddp()

            # Sample images
            if self.step % self.i_sample == 0:
                self.snapshot()

            if self.is_master:
                log.append((self.step, {}))

                # Log time
                log[-1][1]['time'] = {
                    'step': time_end - time_start,
                    'elapsed': time_elapsed,
                }

                # Log losses
                if step_log is not None:
                    log[-1][1].update(step_log)

                # Log scale
                if self.fp16_mode == 'amp':
                    log[-1][1]['scale'] = self.scaler.get_scale()
                elif self.fp16_mode == 'inflat_all':
                    log[-1][1]['log_scale'] = self.log_scale

                # Save log
                if self.step % self.i_log == 0:
                    ## save to log file
                    log_str = '\n'.join([
                        f'{step}: {json.dumps(log)}' for step, log in log
                    ])
                    with open(os.path.join(self.output_dir, 'log.txt'), 'a') as log_file:
                        log_file.write(log_str + '\n')

                    # show with mlflow
                    log_show = [l for _, l in log if not dict_any(l, lambda x: np.isnan(x))]
                    log_show = dict_reduce(log_show, lambda x: np.mean(x))
                    log_show = dict_flatten(log_show, sep='/')
                    for key, value in log_show.items():
                        self.writer.add_scalar(key, value, self.step)
                    log = []

                # Save checkpoint
                if self.step % self.i_save == 0:
                    self.save()

        if self.is_master:
            self.snapshot(suffix='final')
            self.writer.close()
            print('Training finished.')
            
    def profile(self, wait=2, warmup=3, active=5):
        """
        Profile the training loop.
        """
        with torch.profiler.profile(
            schedule=torch.profiler.schedule(wait=wait, warmup=warmup, active=active, repeat=1),
            on_trace_ready=torch.profiler.tensorboard_trace_handler(os.path.join(self.output_dir, 'profile')),
            profile_memory=True,
            with_stack=True,
        ) as prof:
            for _ in range(wait + warmup + active):
                self.run_step()
                prof.step()