Spaces:
Running
Running
File size: 5,823 Bytes
dd1b211 a5b8d61 5367f3d dd1b211 5367f3d dd1b211 5367f3d dd1b211 a5b8d61 11bf0d3 dd1b211 11bf0d3 dd1b211 11bf0d3 a5b8d61 11bf0d3 a5b8d61 11bf0d3 a5b8d61 dd1b211 11bf0d3 db765cd 11bf0d3 dd1b211 11bf0d3 dd1b211 11bf0d3 dd1b211 11bf0d3 dd1b211 11bf0d3 dd1b211 db765cd 11bf0d3 db765cd 11bf0d3 db765cd dd1b211 11bf0d3 dd1b211 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import gradio as gr
from html import escape
from transformers import AutoTokenizer
def get_available_models() -> list[str]:
"""获取models目录下所有包含config.json的模型"""
models_dir = "models"
if not os.path.exists(models_dir):
return []
available_models = []
for model_name in os.listdir(models_dir):
model_path = os.path.join(models_dir, model_name)
config_file = os.path.join(model_path, "config.json")
if os.path.isdir(model_path) and os.path.isfile(config_file):
available_models.append(model_name)
return sorted(available_models)
def tokenize_text(
model_name: str, text: str
) -> tuple[str | None, str | None, int | None, dict | None, int, int]:
"""处理tokenize请求"""
if not model_name:
return "Please choose a model and input some texts", None, None, None, 0, 0
if not text:
text = "Please choose a model and input some texts"
try:
# 加载tokenizer
model_path = os.path.join("models", model_name)
if os.path.isdir(model_path):
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, device_map="cpu"
)
else:
tokenizer = AutoTokenizer.from_pretrained(
model_name, trust_remote_code=True, device_map="cpu"
)
tokenizer_type = tokenizer.__class__.__name__
if hasattr(tokenizer, "vocab_size"):
vocab_size = tokenizer.vocab_size
elif hasattr(tokenizer, "get_vocab"):
vocab_size = len(tokenizer.get_vocab())
else:
vocab_size = -1
sp_token_list = [
"pad_token",
"eos_token",
"bos_token",
"sep_token",
"cls_token",
"unk_token",
"mask_token",
"image_token",
"audio_token",
"video_token",
"vision_bos_token",
"vision_eos_token",
"audio_bos_token",
"audio_eos_token",
]
special_tokens = {}
for token_name in sp_token_list:
if (
hasattr(tokenizer, token_name)
and getattr(tokenizer, token_name) is not None
):
token_value = getattr(tokenizer, token_name)
if token_value and str(token_value).strip():
special_tokens[token_name] = str(token_value)
# Tokenize处理
input_ids = tokenizer.encode(text, add_special_tokens=True)
# 生成带颜色的HTML
colors = ["#A8D8EA", "#AA96DA", "#FCBAD3"]
html_parts = []
for i, token_id in enumerate(input_ids):
# 转义HTML特殊字符
safe_token = escape(tokenizer.decode(token_id))
# 交替颜色
color = colors[i % len(colors)]
html_part = (
f'<span style="background-color: {color};'
f"margin: 2px; padding: 2px 5px; border-radius: 3px;"
f'display: inline-block; font-size: 1.2em;">'
f"{safe_token}<br/>"
f'<sub style="font-size: 0.9em;">{token_id}</sub>'
f"</span>"
)
html_parts.append(html_part)
# 统计信息
token_len = len(input_ids)
char_len = len(text)
return (
"".join(html_parts),
tokenizer_type,
vocab_size,
special_tokens,
token_len,
char_len,
)
except Exception as e:
error_msg = f"Error: {str(e)}"
return error_msg, None, None, None, 0, 0
banner_md = """# 🎨 Tokenize it!
Powerful token visualization tool for your text inputs. 🚀
Works for LLMs both online and *locally* on your machine!"""
banner = gr.Markdown(banner_md)
model_selector = gr.Dropdown(
label="Choose or enter model name",
choices=get_available_models(),
interactive=True,
allow_custom_value=True,
)
text_input = gr.Textbox(label="Input Text", placeholder="Hello World!", lines=4)
submit_btn = gr.Button("🚀 Tokenize!", variant="primary")
tokenizer_type = gr.Textbox(label="Tokenizer Type", interactive=False)
vocab_size = gr.Number(label="Vocab Size", interactive=False)
sp_tokens = gr.JSON(label="Special Tokens")
output_html = gr.HTML(label="Tokenized Output", elem_classes="token-output")
token_count = gr.Number(label="Token Count", value=0, interactive=False)
char_count = gr.Number(label="Character Count", value=0, interactive=False)
with gr.Blocks(title="Token Visualizer", theme="NoCrypt/miku") as webui:
banner.render()
with gr.Row(scale=2):
with gr.Column():
model_selector.render()
text_input.render()
submit_btn.render()
output_html.render()
with gr.Column():
with gr.Accordion("Details", open=False):
with gr.Row():
tokenizer_type.render()
vocab_size.render()
sp_tokens.render()
with gr.Row():
token_count.render()
char_count.render()
# 定义CSS样式
webui.css = """
.token-output span {
margin: 3px;
vertical-align: top;
}
.stats-output {
font-weight: bold !important;
color: #2c3e50 !important;
}
"""
submit_btn.click(
fn=tokenize_text,
inputs=[model_selector, text_input],
outputs=[
output_html,
tokenizer_type,
vocab_size,
sp_tokens,
token_count,
char_count,
],
)
if __name__ == "__main__":
os.makedirs("models", exist_ok=True)
webui.launch(pwa=True)
|