gomoku / LightZero /zoo /mujoco /envs /mujoco_disc_lightzero_env.py
zjowowen's picture
init space
3dfe8fb
import os
from itertools import product
from typing import Union
import gymnasium as gym
import numpy as np
from ding.envs import BaseEnvTimestep
from ding.envs.common import save_frames_as_gif
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from dizoo.mujoco.envs.mujoco_disc_env import MujocoDiscEnv
@ENV_REGISTRY.register('mujoco_disc_lightzero')
class MujocoDiscEnvLZ(MujocoDiscEnv):
"""
Overview:
The modified Mujoco environment with manually discretized action space for LightZero's algorithms.
For each dimension, equally dividing the original continuous action into ``each_dim_disc_size`` bins and
using their Cartesian product to obtain handcrafted discrete actions.
"""
config = dict(
action_clip=False,
delay_reward_step=0,
replay_path=None,
save_replay_gif=False,
replay_path_gif=None,
action_bins_per_branch=None,
norm_obs=dict(use_norm=False, ),
norm_reward=dict(use_norm=False, ),
)
def __init__(self, cfg: dict) -> None:
"""
Overview:
Initialize the MuJoCo environment with the given config dictionary.
Arguments:
- cfg (:obj:`dict`): Configuration dictionary.
"""
super().__init__(cfg)
self._cfg = cfg
# We use env_name to indicate the env_id in LightZero.
self._cfg.env_id = self._cfg.env_name
self._action_clip = cfg.action_clip
self._delay_reward_step = cfg.delay_reward_step
self._init_flag = False
self._replay_path = None
self._replay_path_gif = cfg.replay_path_gif
self._save_replay_gif = cfg.save_replay_gif
def reset(self) -> np.ndarray:
"""
Overview:
Reset the environment. During the reset phase, the original environment will be created,
and at the same time, the action space will be discretized into "each_dim_disc_size" bins.
Returns:
- info_dict (:obj:`Dict[str, Any]`): Including observation, action_mask, and to_play label.
"""
if not self._init_flag:
self._env = self._make_env()
self._env.observation_space.dtype = np.float32
self._observation_space = self._env.observation_space
self._raw_action_space = self._env.action_space
self._reward_space = gym.spaces.Box(
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32
)
self._init_flag = True
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
np_seed = 100 * np.random.randint(1, 1000)
self._env.seed(self._seed + np_seed)
elif hasattr(self, '_seed'):
self._env.seed(self._seed)
if self._replay_path is not None:
self._env = gym.wrappers.RecordVideo(
self._env,
video_folder=self._replay_path,
episode_trigger=lambda episode_id: True,
name_prefix='rl-video-{}'.format(id(self))
)
if self._save_replay_gif:
self._frames = []
obs = self._env.reset()
obs = to_ndarray(obs).astype('float32')
# disc_to_cont: transform discrete action index to original continuous action
self.m = self._raw_action_space.shape[0]
self.n = self._cfg.each_dim_disc_size
self.K = self.n ** self.m
self.disc_to_cont = list(product(*[list(range(self.n)) for _ in range(self.m)]))
self._eval_episode_return = 0.
# the modified discrete action space
self._action_space = gym.spaces.Discrete(self.K)
action_mask = np.ones(self.K, 'int8')
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
return obs
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep:
"""
Overview:
Take an action in the environment. During the step phase, the environment first converts the discrete action into a continuous action,
and then passes it into the original environment.
Arguments:
- action (:obj:`Union[np.ndarray, list]`): Discrete action to be taken in the environment.
Returns:
- BaseEnvTimestep (:obj:`BaseEnvTimestep`): A tuple containing observation, reward, done, and info.
"""
# disc_to_cont: transform discrete action index to original continuous action
action = [-1 + 2 / self.n * k for k in self.disc_to_cont[int(action)]]
action = to_ndarray(action)
if self._save_replay_gif:
self._frames.append(self._env.render(mode='rgb_array'))
if self._action_clip:
action = np.clip(action, -1, 1)
obs, rew, done, info = self._env.step(action)
self._eval_episode_return += rew
if done:
if self._save_replay_gif:
path = os.path.join(
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_name, self._save_replay_count)
)
save_frames_as_gif(self._frames, path)
self._save_replay_count += 1
info['eval_episode_return'] = self._eval_episode_return
obs = to_ndarray(obs).astype(np.float32)
rew = to_ndarray([rew]).astype(np.float32)
action_mask = np.ones(self._action_space.n, 'int8')
obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
return BaseEnvTimestep(obs, rew, done, info)
def __repr__(self) -> str:
"""
Overview:
Represent the environment instance as a string.
Returns:
- repr_str (:obj:`str`): Representation string of the environment instance.
"""
return "LightZero modified Mujoco Env({}) with manually discretized action space".format(self._cfg.env_name)