Spaces:
Sleeping
Sleeping
from typing import Any, List, Tuple | |
import numpy as np | |
import torch | |
from ding.utils import BUFFER_REGISTRY | |
from lzero.mcts.tree_search.mcts_ctree_sampled import SampledEfficientZeroMCTSCtree as MCTSCtree | |
from lzero.mcts.tree_search.mcts_ptree_sampled import SampledEfficientZeroMCTSPtree as MCTSPtree | |
from lzero.mcts.utils import prepare_observation, generate_random_actions_discrete | |
from lzero.policy import to_detach_cpu_numpy, concat_output, concat_output_value, inverse_scalar_transform | |
from .game_buffer_efficientzero import EfficientZeroGameBuffer | |
class SampledEfficientZeroGameBuffer(EfficientZeroGameBuffer): | |
""" | |
Overview: | |
The specific game buffer for Sampled EfficientZero policy. | |
""" | |
def __init__(self, cfg: dict): | |
super().__init__(cfg) | |
""" | |
Overview: | |
Use the default configuration mechanism. If a user passes in a cfg with a key that matches an existing key | |
in the default configuration, the user-provided value will override the default configuration. Otherwise, | |
the default configuration will be used. | |
""" | |
default_config = self.default_config() | |
default_config.update(cfg) | |
self._cfg = default_config | |
assert self._cfg.env_type in ['not_board_games', 'board_games'] | |
assert self._cfg.action_type in ['fixed_action_space', 'varied_action_space'] | |
self.replay_buffer_size = self._cfg.replay_buffer_size | |
self.batch_size = self._cfg.batch_size | |
self._alpha = self._cfg.priority_prob_alpha | |
self._beta = self._cfg.priority_prob_beta | |
self.game_segment_buffer = [] | |
self.game_pos_priorities = [] | |
self.game_segment_game_pos_look_up = [] | |
self.keep_ratio = 1 | |
self.num_of_collected_episodes = 0 | |
self.base_idx = 0 | |
self.clear_time = 0 | |
def sample(self, batch_size: int, policy: Any) -> List[Any]: | |
""" | |
Overview: | |
sample data from ``GameBuffer`` and prepare the current and target batch for training | |
Arguments: | |
- batch_size (:obj:`int`): batch size | |
- policy (:obj:`torch.tensor`): model of policy | |
Returns: | |
- train_data (:obj:`List`): List of train data | |
""" | |
policy._target_model.to(self._cfg.device) | |
policy._target_model.eval() | |
reward_value_context, policy_re_context, policy_non_re_context, current_batch = self._make_batch( | |
batch_size, self._cfg.reanalyze_ratio | |
) | |
# target reward, target value | |
batch_value_prefixs, batch_target_values = self._compute_target_reward_value( | |
reward_value_context, policy._target_model | |
) | |
batch_target_policies_non_re = self._compute_target_policy_non_reanalyzed( | |
policy_non_re_context, self._cfg.model.num_of_sampled_actions | |
) | |
if self._cfg.reanalyze_ratio > 0: | |
# target policy | |
batch_target_policies_re, root_sampled_actions = self._compute_target_policy_reanalyzed( | |
policy_re_context, policy._target_model | |
) | |
# ============================================================== | |
# fix reanalyze in sez: | |
# use the latest root_sampled_actions after the reanalyze process, | |
# because the batch_target_policies_re is corresponding to the latest root_sampled_actions | |
# ============================================================== | |
assert (self._cfg.reanalyze_ratio > 0 and self._cfg.reanalyze_outdated is True), \ | |
"in sampled effiicientzero, if self._cfg.reanalyze_ratio>0, you must set self._cfg.reanalyze_outdated=True" | |
# current_batch = [obs_list, action_list, root_sampled_actions_list, mask_list, batch_index_list, weights_list, make_time_list] | |
if self._cfg.model.continuous_action_space: | |
current_batch[2][:int(batch_size * self._cfg.reanalyze_ratio)] = root_sampled_actions.reshape( | |
int(batch_size * self._cfg.reanalyze_ratio), self._cfg.num_unroll_steps + 1, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.action_space_size | |
) | |
else: | |
current_batch[2][:int(batch_size * self._cfg.reanalyze_ratio)] = root_sampled_actions.reshape( | |
int(batch_size * self._cfg.reanalyze_ratio), self._cfg.num_unroll_steps + 1, | |
self._cfg.model.num_of_sampled_actions, 1 | |
) | |
if 0 < self._cfg.reanalyze_ratio < 1: | |
try: | |
batch_target_policies = np.concatenate([batch_target_policies_re, batch_target_policies_non_re]) | |
except Exception as error: | |
print(error) | |
elif self._cfg.reanalyze_ratio == 1: | |
batch_target_policies = batch_target_policies_re | |
elif self._cfg.reanalyze_ratio == 0: | |
batch_target_policies = batch_target_policies_non_re | |
target_batch = [batch_value_prefixs, batch_target_values, batch_target_policies] | |
# a batch contains the current_batch and the target_batch | |
train_data = [current_batch, target_batch] | |
return train_data | |
def _make_batch(self, batch_size: int, reanalyze_ratio: float) -> Tuple[Any]: | |
""" | |
Overview: | |
first sample orig_data through ``_sample_orig_data()``, | |
then prepare the context of a batch: | |
reward_value_context: the context of reanalyzed value targets | |
policy_re_context: the context of reanalyzed policy targets | |
policy_non_re_context: the context of non-reanalyzed policy targets | |
current_batch: the inputs of batch | |
Arguments: | |
- batch_size (:obj:`int`): the batch size of orig_data from replay buffer. | |
- reanalyze_ratio (:obj:`float`): ratio of reanalyzed policy (value is 100% reanalyzed) | |
Returns: | |
- context (:obj:`Tuple`): reward_value_context, policy_re_context, policy_non_re_context, current_batch | |
""" | |
# obtain the batch context from replay buffer | |
orig_data = self._sample_orig_data(batch_size) | |
game_lst, pos_in_game_segment_list, batch_index_list, weights_list, make_time_list = orig_data | |
batch_size = len(batch_index_list) | |
obs_list, action_list, mask_list = [], [], [] | |
root_sampled_actions_list = [] | |
# prepare the inputs of a batch | |
for i in range(batch_size): | |
game = game_lst[i] | |
pos_in_game_segment = pos_in_game_segment_list[i] | |
# ============================================================== | |
# sampled related core code | |
# ============================================================== | |
actions_tmp = game.action_segment[pos_in_game_segment:pos_in_game_segment + | |
self._cfg.num_unroll_steps].tolist() | |
# NOTE: self._cfg.num_unroll_steps + 1 | |
root_sampled_actions_tmp = game.root_sampled_actions[pos_in_game_segment:pos_in_game_segment + | |
self._cfg.num_unroll_steps + 1] | |
# add mask for invalid actions (out of trajectory), 1 for valid, 0 for invalid | |
mask_tmp = [1. for i in range(len(root_sampled_actions_tmp))] | |
mask_tmp += [0. for _ in range(self._cfg.num_unroll_steps + 1 - len(mask_tmp))] | |
# pad random action | |
if self._cfg.model.continuous_action_space: | |
actions_tmp += [ | |
np.random.randn(self._cfg.model.action_space_size) | |
for _ in range(self._cfg.num_unroll_steps - len(actions_tmp)) | |
] | |
root_sampled_actions_tmp += [ | |
np.random.rand(self._cfg.model.num_of_sampled_actions, self._cfg.model.action_space_size) | |
for _ in range(self._cfg.num_unroll_steps + 1 - len(root_sampled_actions_tmp)) | |
] | |
else: | |
# generate random `padded actions_tmp` | |
actions_tmp += generate_random_actions_discrete( | |
self._cfg.num_unroll_steps - len(actions_tmp), | |
self._cfg.model.action_space_size, | |
1 # Number of sampled actions for actions_tmp is 1 | |
) | |
# generate random padded `root_sampled_actions_tmp` | |
# root_sampled_action have different shape in mcts_ctree and mcts_ptree, thus we need to pad differently | |
reshape = True if self._cfg.mcts_ctree else False | |
root_sampled_actions_tmp += generate_random_actions_discrete( | |
self._cfg.num_unroll_steps + 1 - len(root_sampled_actions_tmp), | |
self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, | |
reshape=reshape | |
) | |
# obtain the input observations | |
# stack+num_unroll_steps = 4+5 | |
# pad if length of obs in game_segment is less than stack+num_unroll_steps | |
obs_list.append( | |
game_lst[i].get_unroll_obs( | |
pos_in_game_segment_list[i], num_unroll_steps=self._cfg.num_unroll_steps, padding=True | |
) | |
) | |
action_list.append(actions_tmp) | |
root_sampled_actions_list.append(root_sampled_actions_tmp) | |
mask_list.append(mask_tmp) | |
# formalize the input observations | |
obs_list = prepare_observation(obs_list, self._cfg.model.model_type) | |
# ============================================================== | |
# sampled related core code | |
# ============================================================== | |
# formalize the inputs of a batch | |
current_batch = [ | |
obs_list, action_list, root_sampled_actions_list, mask_list, batch_index_list, weights_list, make_time_list | |
] | |
for i in range(len(current_batch)): | |
current_batch[i] = np.asarray(current_batch[i]) | |
total_transitions = self.get_num_of_transitions() | |
# obtain the context of value targets | |
reward_value_context = self._prepare_reward_value_context( | |
batch_index_list, game_lst, pos_in_game_segment_list, total_transitions | |
) | |
""" | |
only reanalyze recent reanalyze_ratio (e.g. 50%) data | |
if self._cfg.reanalyze_outdated is True, batch_index_list is sorted according to its generated env_steps | |
0: reanalyze_num -> reanalyzed policy, reanalyze_num:end -> non reanalyzed policy | |
""" | |
reanalyze_num = int(batch_size * reanalyze_ratio) | |
# reanalyzed policy | |
if reanalyze_num > 0: | |
# obtain the context of reanalyzed policy targets | |
policy_re_context = self._prepare_policy_reanalyzed_context( | |
batch_index_list[:reanalyze_num], game_lst[:reanalyze_num], pos_in_game_segment_list[:reanalyze_num] | |
) | |
else: | |
policy_re_context = None | |
# non reanalyzed policy | |
if reanalyze_num < batch_size: | |
# obtain the context of non-reanalyzed policy targets | |
policy_non_re_context = self._prepare_policy_non_reanalyzed_context( | |
batch_index_list[reanalyze_num:], game_lst[reanalyze_num:], pos_in_game_segment_list[reanalyze_num:] | |
) | |
else: | |
policy_non_re_context = None | |
context = reward_value_context, policy_re_context, policy_non_re_context, current_batch | |
return context | |
def _compute_target_reward_value(self, reward_value_context: List[Any], model: Any) -> List[np.ndarray]: | |
""" | |
Overview: | |
prepare reward and value targets from the context of rewards and values. | |
Arguments: | |
- reward_value_context (:obj:'list'): the reward value context | |
- model (:obj:'torch.tensor'):model of the target model | |
Returns: | |
- batch_value_prefixs (:obj:'np.ndarray): batch of value prefix | |
- batch_target_values (:obj:'np.ndarray): batch of value estimation | |
""" | |
value_obs_list, value_mask, pos_in_game_segment_list, rewards_list, game_segment_lens, td_steps_list, action_mask_segment, \ | |
to_play_segment = reward_value_context # noqa | |
# transition_batch_size = game_segment_batch_size * (num_unroll_steps+1) | |
transition_batch_size = len(value_obs_list) | |
game_segment_batch_size = len(pos_in_game_segment_list) | |
to_play, action_mask = self._preprocess_to_play_and_action_mask( | |
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list | |
) | |
if self._cfg.model.continuous_action_space is True: | |
# when the action space of the environment is continuous, action_mask[:] is None. | |
action_mask = [ | |
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size) | |
] | |
# NOTE: in continuous action space env: we set all legal_actions as -1 | |
legal_actions = [ | |
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size) | |
] | |
else: | |
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)] | |
batch_target_values, batch_value_prefixs = [], [] | |
with torch.no_grad(): | |
value_obs_list = prepare_observation(value_obs_list, self._cfg.model.model_type) | |
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors | |
slices = int(np.ceil(transition_batch_size / self._cfg.mini_infer_size)) | |
network_output = [] | |
for i in range(slices): | |
beg_index = self._cfg.mini_infer_size * i | |
end_index = self._cfg.mini_infer_size * (i + 1) | |
m_obs = torch.from_numpy(value_obs_list[beg_index:end_index]).to(self._cfg.device).float() | |
# calculate the target value | |
m_output = model.initial_inference(m_obs) | |
# TODO(pu) | |
if not model.training: | |
# if not in training, obtain the scalars of the value/reward | |
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy( | |
[ | |
m_output.latent_state, | |
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale), | |
m_output.policy_logits | |
] | |
) | |
m_output.reward_hidden_state = ( | |
m_output.reward_hidden_state[0].detach().cpu().numpy(), | |
m_output.reward_hidden_state[1].detach().cpu().numpy() | |
) | |
network_output.append(m_output) | |
# concat the output slices after model inference | |
if self._cfg.use_root_value: | |
# use the root values from MCTS | |
# the root values have limited improvement but require much more GPU actors; | |
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output( | |
network_output, data_type='efficientzero' | |
) | |
value_prefix_pool = value_prefix_pool.squeeze().tolist() | |
policy_logits_pool = policy_logits_pool.tolist() | |
# generate the noises for the root nodes | |
noises = [ | |
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.num_of_sampled_actions | |
).astype(np.float32).tolist() for _ in range(transition_batch_size) | |
] | |
if self._cfg.mcts_ctree: | |
# cpp mcts_tree | |
# prepare the root nodes for MCTS | |
roots = MCTSCtree.roots( | |
transition_batch_size, legal_actions, self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space | |
) | |
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play) | |
# do MCTS for a new policy with the recent target model | |
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play) | |
else: | |
# python mcts_tree | |
roots = MCTSPtree.roots( | |
transition_batch_size, legal_actions, self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space | |
) | |
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play) | |
# do MCTS for a new policy with the recent target model | |
MCTSPtree.roots(self._cfg | |
).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play) | |
roots_values = roots.get_values() | |
value_list = np.array(roots_values) | |
else: | |
# use the predicted values | |
value_list = concat_output_value(network_output) | |
# get last state value | |
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]: | |
# TODO(pu): for board_games, very important, to check | |
value_list = value_list.reshape(-1) * np.array( | |
[ | |
self._cfg.discount_factor ** td_steps_list[i] if int(td_steps_list[i]) % | |
2 == 0 else -self._cfg.discount_factor ** td_steps_list[i] | |
for i in range(transition_batch_size) | |
] | |
) | |
else: | |
value_list = value_list.reshape(-1) * ( | |
np.array([self._cfg.discount_factor for _ in range(transition_batch_size)]) ** td_steps_list | |
) | |
value_list = value_list * np.array(value_mask) | |
value_list = value_list.tolist() | |
horizon_id, value_index = 0, 0 | |
for game_segment_len_non_re, reward_list, state_index, to_play_list in zip(game_segment_lens, rewards_list, | |
pos_in_game_segment_list, | |
to_play_segment): | |
target_values = [] | |
target_value_prefixs = [] | |
value_prefix = 0.0 | |
base_index = state_index | |
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1): | |
bootstrap_index = current_index + td_steps_list[value_index] | |
# for i, reward in enumerate(game.rewards[current_index:bootstrap_index]): | |
for i, reward in enumerate(reward_list[current_index:bootstrap_index]): | |
if self._cfg.env_type == 'board_games' and to_play_segment[0][0] in [1, 2]: | |
# TODO(pu): for board_games, very important, to check | |
if to_play_list[base_index] == to_play_list[i]: | |
value_list[value_index] += reward * self._cfg.discount_factor ** i | |
else: | |
value_list[value_index] += -reward * self._cfg.discount_factor ** i | |
else: | |
value_list[value_index] += reward * self._cfg.discount_factor ** i | |
# TODO(pu): why value don't use discount_factor factor | |
# reset every lstm_horizon_len | |
if horizon_id % self._cfg.lstm_horizon_len == 0: | |
value_prefix = 0.0 | |
base_index = current_index | |
horizon_id += 1 | |
if current_index < game_segment_len_non_re: | |
target_values.append(value_list[value_index]) | |
# Since the horizon is small and the discount_factor is close to 1. | |
# Compute the reward sum to approximate the value prefix for simplification | |
value_prefix += reward_list[current_index | |
] # * config.discount_factor ** (current_index - base_index) | |
target_value_prefixs.append(value_prefix) | |
else: | |
target_values.append(0) | |
target_value_prefixs.append(value_prefix) | |
value_index += 1 | |
batch_value_prefixs.append(target_value_prefixs) | |
batch_target_values.append(target_values) | |
batch_value_prefixs = np.asarray(batch_value_prefixs, dtype=object) | |
batch_target_values = np.asarray(batch_target_values, dtype=object) | |
return batch_value_prefixs, batch_target_values | |
def _compute_target_policy_reanalyzed(self, policy_re_context: List[Any], model: Any) -> np.ndarray: | |
""" | |
Overview: | |
prepare policy targets from the reanalyzed context of policies | |
Arguments: | |
- policy_re_context (:obj:`List`): List of policy context to reanalyzed | |
Returns: | |
- batch_target_policies_re | |
""" | |
if policy_re_context is None: | |
return [] | |
batch_target_policies_re = [] | |
policy_obs_list, policy_mask, pos_in_game_segment_list, batch_index_list, child_visits, game_segment_lens, action_mask_segment, \ | |
to_play_segment = policy_re_context # noqa | |
# transition_batch_size = game_segment_batch_size * (self._cfg.num_unroll_steps + 1) | |
transition_batch_size = len(policy_obs_list) | |
game_segment_batch_size = len(pos_in_game_segment_list) | |
to_play, action_mask = self._preprocess_to_play_and_action_mask( | |
game_segment_batch_size, to_play_segment, action_mask_segment, pos_in_game_segment_list | |
) | |
if self._cfg.model.continuous_action_space is True: | |
# when the action space of the environment is continuous, action_mask[:] is None. | |
action_mask = [ | |
list(np.ones(self._cfg.model.action_space_size, dtype=np.int8)) for _ in range(transition_batch_size) | |
] | |
# NOTE: in continuous action space env, we set all legal_actions as -1 | |
legal_actions = [ | |
[-1 for _ in range(self._cfg.model.action_space_size)] for _ in range(transition_batch_size) | |
] | |
else: | |
legal_actions = [[i for i, x in enumerate(action_mask[j]) if x == 1] for j in range(transition_batch_size)] | |
with torch.no_grad(): | |
policy_obs_list = prepare_observation(policy_obs_list, self._cfg.model.model_type) | |
# split a full batch into slices of mini_infer_size: to save the GPU memory for more GPU actors | |
self._cfg.mini_infer_size = self._cfg.mini_infer_size | |
slices = np.ceil(transition_batch_size / self._cfg.mini_infer_size).astype(np.int_) | |
network_output = [] | |
for i in range(slices): | |
beg_index = self._cfg.mini_infer_size * i | |
end_index = self._cfg.mini_infer_size * (i + 1) | |
m_obs = torch.from_numpy(policy_obs_list[beg_index:end_index]).to(self._cfg.device).float() | |
m_output = model.initial_inference(m_obs) | |
if not model.training: | |
# if not in training, obtain the scalars of the value/reward | |
[m_output.latent_state, m_output.value, m_output.policy_logits] = to_detach_cpu_numpy( | |
[ | |
m_output.latent_state, | |
inverse_scalar_transform(m_output.value, self._cfg.model.support_scale), | |
m_output.policy_logits | |
] | |
) | |
m_output.reward_hidden_state = ( | |
m_output.reward_hidden_state[0].detach().cpu().numpy(), | |
m_output.reward_hidden_state[1].detach().cpu().numpy() | |
) | |
network_output.append(m_output) | |
_, value_prefix_pool, policy_logits_pool, latent_state_roots, reward_hidden_state_roots = concat_output( | |
network_output, data_type='efficientzero' | |
) | |
value_prefix_pool = value_prefix_pool.squeeze().tolist() | |
policy_logits_pool = policy_logits_pool.tolist() | |
noises = [ | |
np.random.dirichlet([self._cfg.root_dirichlet_alpha] * self._cfg.model.num_of_sampled_actions | |
).astype(np.float32).tolist() for _ in range(transition_batch_size) | |
] | |
if self._cfg.mcts_ctree: | |
# ============================================================== | |
# sampled related core code | |
# ============================================================== | |
# cpp mcts_tree | |
roots = MCTSCtree.roots( | |
transition_batch_size, legal_actions, self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space | |
) | |
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play) | |
# do MCTS for a new policy with the recent target model | |
MCTSCtree(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play) | |
else: | |
# python mcts_tree | |
roots = MCTSPtree.roots( | |
transition_batch_size, legal_actions, self._cfg.model.action_space_size, | |
self._cfg.model.num_of_sampled_actions, self._cfg.model.continuous_action_space | |
) | |
roots.prepare(self._cfg.root_noise_weight, noises, value_prefix_pool, policy_logits_pool, to_play) | |
# do MCTS for a new policy with the recent target model | |
MCTSPtree.roots(self._cfg).search(roots, model, latent_state_roots, reward_hidden_state_roots, to_play) | |
roots_legal_actions_list = legal_actions | |
roots_distributions = roots.get_distributions() | |
# ============================================================== | |
# fix reanalyze in sez | |
# ============================================================== | |
roots_sampled_actions = roots.get_sampled_actions() | |
try: | |
root_sampled_actions = np.array([action.value for action in roots_sampled_actions]) | |
except Exception: | |
root_sampled_actions = np.array([action for action in roots_sampled_actions]) | |
policy_index = 0 | |
for state_index, game_idx in zip(pos_in_game_segment_list, batch_index_list): | |
target_policies = [] | |
for current_index in range(state_index, state_index + self._cfg.num_unroll_steps + 1): | |
distributions = roots_distributions[policy_index] | |
# ============================================================== | |
# sampled related core code | |
# ============================================================== | |
if policy_mask[policy_index] == 0: | |
# NOTE: the invalid padding target policy, O is to make sure the correspoding cross_entropy_loss=0 | |
target_policies.append([0 for _ in range(self._cfg.model.num_of_sampled_actions)]) | |
else: | |
if distributions is None: | |
# if at some obs, the legal_action is None, then add the fake target_policy | |
target_policies.append( | |
list( | |
np.ones(self._cfg.model.num_of_sampled_actions) / | |
self._cfg.model.num_of_sampled_actions | |
) | |
) | |
else: | |
if self._cfg.action_type == 'fixed_action_space': | |
sum_visits = sum(distributions) | |
policy = [visit_count / sum_visits for visit_count in distributions] | |
target_policies.append(policy) | |
else: | |
# for two_player board games | |
policy_tmp = [0 for _ in range(self._cfg.model.num_of_sampled_actions)] | |
# to make sure target_policies have the same dimension | |
sum_visits = sum(distributions) | |
policy = [visit_count / sum_visits for visit_count in distributions] | |
for index, legal_action in enumerate(roots_legal_actions_list[policy_index]): | |
policy_tmp[legal_action] = policy[index] | |
target_policies.append(policy_tmp) | |
policy_index += 1 | |
batch_target_policies_re.append(target_policies) | |
batch_target_policies_re = np.array(batch_target_policies_re) | |
return batch_target_policies_re, root_sampled_actions | |
def update_priority(self, train_data: List[np.ndarray], batch_priorities: Any) -> None: | |
""" | |
Overview: | |
Update the priority of training data. | |
Arguments: | |
- train_data (:obj:`Optional[List[Optional[np.ndarray]]]`): training data to be updated priority. | |
- batch_priorities (:obj:`batch_priorities`): priorities to update to. | |
NOTE: | |
train_data = [current_batch, target_batch] | |
current_batch = [obs_list, action_list, root_sampled_actions_list, mask_list, batch_index_list, weights_list, make_time_list] | |
""" | |
batch_index_list = train_data[0][4] | |
metas = {'make_time': train_data[0][6], 'batch_priorities': batch_priorities} | |
# only update the priorities for data still in replay buffer | |
for i in range(len(batch_index_list)): | |
if metas['make_time'][i] > self.clear_time: | |
idx, prio = batch_index_list[i], metas['batch_priorities'][i] | |
self.game_pos_priorities[idx] = prio | |