Spaces:
Sleeping
Sleeping
from typing import Dict | |
import gym | |
import numpy as np | |
from ding.envs import ObsNormWrapper, RewardNormWrapper, DelayRewardWrapper, EvalEpisodeReturnWrapper | |
def wrap_mujoco( | |
env_id, | |
norm_obs: Dict = dict(use_norm=False, ), | |
norm_reward: Dict = dict(use_norm=False, ), | |
delay_reward_step: int = 1 | |
) -> gym.Env: | |
r""" | |
Overview: | |
Wrap Mujoco Env to preprocess env step's return info, e.g. observation normalization, reward normalization, etc. | |
Arguments: | |
- env_id (:obj:`str`): Mujoco environment id, for example "HalfCheetah-v3" | |
- norm_obs (:obj:`EasyDict`): Whether to normalize observation or not | |
- norm_reward (:obj:`EasyDict`): Whether to normalize reward or not. For evaluator, environment's reward \ | |
should not be normalized: Either ``norm_reward`` is None or ``norm_reward.use_norm`` is False can do this. | |
Returns: | |
- wrapped_env (:obj:`gym.Env`): The wrapped mujoco environment | |
""" | |
# import customized gym environment | |
from . import mujoco_gym_env | |
env = gym.make(env_id) | |
env = EvalEpisodeReturnWrapper(env) | |
if norm_obs is not None and norm_obs.use_norm: | |
env = ObsNormWrapper(env) | |
if norm_reward is not None and norm_reward.use_norm: | |
env = RewardNormWrapper(env, norm_reward.reward_discount) | |
if delay_reward_step > 1: | |
env = DelayRewardWrapper(env, delay_reward_step) | |
return env | |