Spaces:
Sleeping
Sleeping
import copy | |
import os | |
from typing import Union, List, Optional | |
import gym | |
import numpy as np | |
import torch | |
from easydict import EasyDict | |
from ding.envs import BaseEnv, BaseEnvTimestep | |
from ding.envs.common import save_frames_as_gif | |
from ding.torch_utils import to_ndarray | |
from ding.utils import ENV_REGISTRY | |
from .mujoco_wrappers import wrap_mujoco | |
class MujocoEnv(BaseEnv): | |
def default_config(cls: type) -> EasyDict: | |
cfg = EasyDict(copy.deepcopy(cls.config)) | |
cfg.cfg_type = cls.__name__ + 'Dict' | |
return cfg | |
config = dict( | |
action_clip=False, | |
delay_reward_step=0, | |
replay_path=None, | |
save_replay_gif=False, | |
replay_path_gif=None, | |
action_bins_per_branch=None, | |
) | |
def __init__(self, cfg: dict) -> None: | |
self._cfg = cfg | |
self._action_clip = cfg.action_clip | |
self._delay_reward_step = cfg.delay_reward_step | |
self._init_flag = False | |
self._replay_path = None | |
self._replay_path_gif = cfg.replay_path_gif | |
self._save_replay_gif = cfg.save_replay_gif | |
self._action_bins_per_branch = cfg.action_bins_per_branch | |
def map_action(self, action: Union[np.ndarray, list]) -> Union[np.ndarray, list]: | |
""" | |
Overview: | |
Map the discretized action index to the action in the original action space. | |
Arguments: | |
- action (:obj:`np.ndarray or list`): The discretized action index. \ | |
The value ranges is {0, 1, ..., self._action_bins_per_branch - 1}. | |
Returns: | |
- outputs (:obj:`list`): The action in the original action space. \ | |
The value ranges is [-1, 1]. | |
Examples: | |
>>> inputs = [2, 0, 4] | |
>>> self._action_bins_per_branch = 5 | |
>>> outputs = map_action(inputs) | |
>>> assert isinstance(outputs, list) and outputs == [0.0, -1.0, 1.0] | |
""" | |
return [2 * x / (self._action_bins_per_branch - 1) - 1 for x in action] | |
def reset(self) -> np.ndarray: | |
if not self._init_flag: | |
self._env = self._make_env() | |
if self._replay_path is not None: | |
self._env = gym.wrappers.RecordVideo( | |
self._env, | |
video_folder=self._replay_path, | |
episode_trigger=lambda episode_id: True, | |
name_prefix='rl-video-{}'.format(id(self)) | |
) | |
self._env.observation_space.dtype = np.float32 # To unify the format of envs in DI-engine | |
self._observation_space = self._env.observation_space | |
self._action_space = self._env.action_space | |
self._reward_space = gym.spaces.Box( | |
low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32 | |
) | |
self._init_flag = True | |
if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed: | |
np_seed = 100 * np.random.randint(1, 1000) | |
self._env.seed(self._seed + np_seed) | |
elif hasattr(self, '_seed'): | |
self._env.seed(self._seed) | |
obs = self._env.reset() | |
obs = to_ndarray(obs).astype('float32') | |
self._eval_episode_return = 0. | |
return obs | |
def close(self) -> None: | |
if self._init_flag: | |
self._env.close() | |
self._init_flag = False | |
def seed(self, seed: int, dynamic_seed: bool = True) -> None: | |
self._seed = seed | |
self._dynamic_seed = dynamic_seed | |
np.random.seed(self._seed) | |
def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep: | |
if self._action_bins_per_branch: | |
action = self.map_action(action) | |
action = to_ndarray(action) | |
if self._save_replay_gif: | |
self._frames.append(self._env.render(mode='rgb_array')) | |
if self._action_clip: | |
action = np.clip(action, -1, 1) | |
obs, rew, done, info = self._env.step(action) | |
self._eval_episode_return += rew | |
if done: | |
if self._save_replay_gif: | |
path = os.path.join( | |
self._replay_path_gif, '{}_episode_{}.gif'.format(self._cfg.env_id, self._save_replay_count) | |
) | |
save_frames_as_gif(self._frames, path) | |
self._save_replay_count += 1 | |
info['eval_episode_return'] = self._eval_episode_return | |
obs = to_ndarray(obs).astype(np.float32) | |
rew = to_ndarray([rew]).astype(np.float32) | |
return BaseEnvTimestep(obs, rew, done, info) | |
def _make_env(self): | |
return wrap_mujoco( | |
self._cfg.env_id, | |
norm_obs=self._cfg.get('norm_obs', None), | |
norm_reward=self._cfg.get('norm_reward', None), | |
delay_reward_step=self._delay_reward_step | |
) | |
def enable_save_replay(self, replay_path: Optional[str] = None) -> None: | |
if replay_path is None: | |
replay_path = './video' | |
self._replay_path = replay_path | |
def random_action(self) -> np.ndarray: | |
return self.action_space.sample() | |
def __repr__(self) -> str: | |
return "DI-engine Mujoco Env({})".format(self._cfg.env_id) | |
def create_collector_env_cfg(cfg: dict) -> List[dict]: | |
collector_cfg = copy.deepcopy(cfg) | |
collector_env_num = collector_cfg.pop('collector_env_num', 1) | |
return [collector_cfg for _ in range(collector_env_num)] | |
def create_evaluator_env_cfg(cfg: dict) -> List[dict]: | |
evaluator_cfg = copy.deepcopy(cfg) | |
evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1) | |
evaluator_cfg.norm_reward.use_norm = False | |
return [evaluator_cfg for _ in range(evaluator_env_num)] | |
def observation_space(self) -> gym.spaces.Space: | |
return self._observation_space | |
def action_space(self) -> gym.spaces.Space: | |
return self._action_space | |
def reward_space(self) -> gym.spaces.Space: | |
return self._reward_space | |
class MBMujocoEnv(MujocoEnv): | |
def termination_fn(self, next_obs: torch.Tensor) -> torch.Tensor: | |
""" | |
Overview: | |
This function determines whether each state is a terminated state. | |
.. note:: | |
This is a collection of termination functions for mujocos used in MBPO (arXiv: 1906.08253),\ | |
directly copied from MBPO repo https://github.com/jannerm/mbpo/tree/master/mbpo/static. | |
""" | |
assert len(next_obs.shape) == 2 | |
if self._cfg.env_id == "Hopper-v2": | |
height = next_obs[:, 0] | |
angle = next_obs[:, 1] | |
not_done = torch.isfinite(next_obs).all(-1) \ | |
* (torch.abs(next_obs[:, 1:]) < 100).all(-1) \ | |
* (height > .7) \ | |
* (torch.abs(angle) < .2) | |
done = ~not_done | |
return done | |
elif self._cfg.env_id == "Walker2d-v2": | |
height = next_obs[:, 0] | |
angle = next_obs[:, 1] | |
not_done = (height > 0.8) \ | |
* (height < 2.0) \ | |
* (angle > -1.0) \ | |
* (angle < 1.0) | |
done = ~not_done | |
return done | |
elif 'walker_' in self._cfg.env_id: | |
torso_height = next_obs[:, -2] | |
torso_ang = next_obs[:, -1] | |
if 'walker_7' in self._cfg.env_id or 'walker_5' in self._cfg.env_id: | |
offset = 0. | |
else: | |
offset = 0.26 | |
not_done = (torso_height > 0.8 - offset) \ | |
* (torso_height < 2.0 - offset) \ | |
* (torso_ang > -1.0) \ | |
* (torso_ang < 1.0) | |
done = ~not_done | |
return done | |
elif self._cfg.env_id == "HalfCheetah-v3": | |
done = torch.zeros_like(next_obs.sum(-1)).bool() | |
return done | |
elif self._cfg.env_id in ['Ant-v2', 'AntTruncatedObs-v2']: | |
x = next_obs[:, 0] | |
not_done = torch.isfinite(next_obs).all(axis=-1) \ | |
* (x >= 0.2) \ | |
* (x <= 1.0) | |
done = ~not_done | |
return done | |
elif self._cfg.env_id in ['Humanoid-v2', 'HumanoidTruncatedObs-v2']: | |
z = next_obs[:, 0] | |
done = (z < 1.0) + (z > 2.0) | |
return done | |
else: | |
raise KeyError("not implemented env_id: {}".format(self._cfg.env_id)) | |