Spaces:
Sleeping
Sleeping
import os | |
import gym | |
from tensorboardX import SummaryWriter | |
from easydict import EasyDict | |
from ding.config import compile_config | |
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, AdvancedReplayBuffer | |
from ding.envs import BaseEnvManager, DingEnvWrapper | |
from ding.policy import D4PGPolicy | |
from ding.model.template.qac_dist import QACDIST | |
from ding.utils import set_pkg_seed | |
from dizoo.mujoco.envs.mujoco_env import MujocoEnv | |
from dizoo.classic_control.pendulum.config.pendulum_ppo_config import pendulum_ppo_config | |
from dizoo.mujoco.config.hopper_d4pg_config import hopper_d4pg_config | |
def main(cfg, seed=0, max_iterations=int(1e10)): | |
cfg = compile_config( | |
cfg, | |
BaseEnvManager, | |
D4PGPolicy, | |
BaseLearner, | |
SampleSerialCollector, | |
InteractionSerialEvaluator, | |
AdvancedReplayBuffer, | |
MujocoEnv, | |
save_cfg=True | |
) | |
collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num | |
collector_env = BaseEnvManager( | |
env_fn=[lambda: MujocoEnv(cfg.env) for _ in range(collector_env_num)], cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManager( | |
env_fn=[lambda: MujocoEnv(cfg.env) for _ in range(evaluator_env_num)], cfg=cfg.env.manager | |
) | |
collector_env.seed(seed, dynamic_seed=True) | |
evaluator_env.seed(seed, dynamic_seed=False) | |
set_pkg_seed(seed, use_cuda=cfg.policy.cuda) | |
model = QACDIST(**cfg.policy.model) | |
policy = D4PGPolicy(cfg.policy, model=model) | |
tb_logger = SummaryWriter(os.path.join('./log/', 'serial')) | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger) | |
collector = SampleSerialCollector(cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger) | |
evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger) | |
replay_buffer = AdvancedReplayBuffer(cfg.policy.other.replay_buffer, tb_logger, exp_name=cfg.exp_name) | |
for _ in range(max_iterations): | |
if evaluator.should_eval(learner.train_iter): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
# Collect data from environments | |
new_data = collector.collect(train_iter=learner.train_iter) | |
replay_buffer.push(new_data, cur_collector_envstep=collector.envstep) | |
# Train | |
for i in range(cfg.policy.learn.update_per_collect): | |
train_data = replay_buffer.sample(learner.policy.get_attribute('batch_size'), learner.train_iter) | |
if train_data is None: | |
break | |
learner.train(train_data, collector.envstep) | |
replay_buffer.update(learner.priority_info) | |
if __name__ == "__main__": | |
main(hopper_d4pg_config) | |