Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
hopper_trex_onppo_config = dict( | |
exp_name='hopper_trex_onppo_seed0', | |
env=dict( | |
env_id='Hopper-v3', | |
norm_obs=dict(use_norm=False, ), | |
norm_reward=dict(use_norm=False, ), | |
collector_env_num=8, | |
evaluator_env_num=10, | |
n_evaluator_episode=10, | |
stop_value=3000, | |
), | |
reward_model=dict( | |
min_snippet_length=30, | |
max_snippet_length=100, | |
checkpoint_min=10000, | |
checkpoint_max=90000, | |
checkpoint_step=10000, | |
num_snippets=60000, | |
learning_rate=1e-5, | |
update_per_collect=1, | |
# Users should add their own model path here. Model path should lead to a model. | |
# Absolute path is recommended. | |
# In DI-engine, it is ``exp_name/ckpt/ckpt_best.pth.tar``. | |
# However, here in ``expert_model_path``, it is ``exp_name`` of the expert config. | |
expert_model_path='model_path_placeholder', | |
# Path where to store the reward model | |
reward_model_path='data_path_placeholder + /Hopper.params', | |
# Users should add their own data path here. Data path should lead to a file to store data or load the stored data. | |
# Absolute path is recommended. | |
# In DI-engine, it is usually located in ``exp_name`` directory | |
# See ding/entry/application_entry_trex_collect_data.py to collect the data | |
data_path='data_path_placeholder', | |
), | |
policy=dict( | |
cuda=True, | |
recompute_adv=True, | |
model=dict( | |
obs_shape=11, | |
action_shape=3, | |
action_space='continuous', | |
), | |
action_space='continuous', | |
learn=dict( | |
epoch_per_collect=10, | |
batch_size=64, | |
learning_rate=3e-4, | |
value_weight=0.5, | |
entropy_weight=0.0, | |
clip_ratio=0.2, | |
adv_norm=True, | |
value_norm=True, | |
), | |
collect=dict( | |
n_sample=2048, | |
unroll_len=1, | |
discount_factor=0.99, | |
gae_lambda=0.97, | |
), | |
eval=dict(evaluator=dict(eval_freq=5000, )), | |
), | |
) | |
hopper_trex_onppo_config = EasyDict(hopper_trex_onppo_config) | |
main_config = hopper_trex_onppo_config | |
hopper_trex_onppo_create_config = dict( | |
env=dict( | |
type='mujoco', | |
import_names=['dizoo.mujoco.envs.mujoco_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict(type='ppo', ), | |
) | |
hopper_trex_onppo_create_config = EasyDict(hopper_trex_onppo_create_config) | |
create_config = hopper_trex_onppo_create_config | |
if __name__ == '__main__': | |
# Users should first run ``hopper_onppo_config.py`` to save models (or checkpoints). | |
# Note: Users should check that the checkpoints generated should include iteration_'checkpoint_min'.pth.tar, iteration_'checkpoint_max'.pth.tar with the interval checkpoint_step | |
# where checkpoint_max, checkpoint_min, checkpoint_step are specified above. | |
import argparse | |
import torch | |
from ding.entry import trex_collecting_data | |
from ding.entry import serial_pipeline_trex_onpolicy | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--cfg', type=str, default='please enter abs path for this file') | |
parser.add_argument('--seed', type=int, default=0) | |
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') | |
args = parser.parse_args() | |
# The function ``trex_collecting_data`` below is to collect episodic data for training the reward model in trex. | |
trex_collecting_data(args) | |
serial_pipeline_trex_onpolicy([main_config, create_config]) | |