Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
halfcheetah_d4pg_config = dict( | |
exp_name='halfcheetah_d4pg_seed0', | |
env=dict( | |
env_id='HalfCheetah-v3', | |
norm_obs=dict(use_norm=False, ), | |
norm_reward=dict(use_norm=False, ), | |
collector_env_num=4, | |
evaluator_env_num=4, | |
n_evaluator_episode=8, | |
stop_value=20000, | |
), | |
policy=dict( | |
cuda=True, | |
priority=True, | |
nstep=5, | |
random_collect_size=10000, | |
model=dict( | |
obs_shape=17, | |
action_shape=6, | |
actor_head_hidden_size=512, | |
critic_head_hidden_size=512, | |
action_space='regression', | |
critic_head_type='categorical', | |
v_min=0, | |
v_max=5000, # v_max: [3000, 10000] | |
n_atom=51, | |
), | |
learn=dict( | |
update_per_collect=4, # update_per_collect: [1, 4] | |
batch_size=256, | |
learning_rate_actor=3e-4, | |
learning_rate_critic=3e-4, | |
ignore_done=True, | |
target_theta=0.005, | |
discount_factor=0.99, | |
actor_update_freq=1, | |
noise=False, | |
), | |
collect=dict( | |
n_sample=8, | |
unroll_len=1, | |
noise_sigma=0.2, # noise_sigma: [0.1, 0.2] | |
), | |
other=dict(replay_buffer=dict(replay_buffer_size=1000000, ), ), | |
) | |
) | |
halfcheetah_d4pg_config = EasyDict(halfcheetah_d4pg_config) | |
main_config = halfcheetah_d4pg_config | |
halfcheetah_d4pg_create_config = dict( | |
env=dict( | |
type='mujoco', | |
import_names=['dizoo.mujoco.envs.mujoco_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='d4pg', | |
import_names=['ding.policy.d4pg'], | |
), | |
) | |
halfcheetah_d4pg_create_config = EasyDict(halfcheetah_d4pg_create_config) | |
create_config = halfcheetah_d4pg_create_config | |
if __name__ == "__main__": | |
# or you can enter `ding -m serial -c halfcheetah_d4pg_config.py -s 0` | |
from ding.entry import serial_pipeline | |
serial_pipeline((main_config, create_config), seed=0) | |