Spaces:
Sleeping
Sleeping
from typing import Union | |
import torch | |
import torch.nn as nn | |
from .nn_module import conv2d_block, fc_block | |
class ResBlock(nn.Module): | |
""" | |
Overview: | |
Residual Block with 2D convolution layers, including 3 types: | |
basic block: | |
input channel: C | |
x -> 3*3*C -> norm -> act -> 3*3*C -> norm -> act -> out | |
\__________________________________________/+ | |
bottleneck block: | |
x -> 1*1*(1/4*C) -> norm -> act -> 3*3*(1/4*C) -> norm -> act -> 1*1*C -> norm -> act -> out | |
\_____________________________________________________________________________/+ | |
downsample block: used in EfficientZero | |
input channel: C | |
x -> 3*3*C -> norm -> act -> 3*3*C -> norm -> act -> out | |
\__________________ 3*3*C ____________________/+ | |
For more details, please refer to `Deep Residual Learning for Image Recognition | |
<https://arxiv.org/abs/1512.03385>`_. | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
activation: nn.Module = nn.ReLU(), | |
norm_type: str = 'BN', | |
res_type: str = 'basic', | |
bias: bool = True, | |
out_channels: Union[int, None] = None, | |
) -> None: | |
""" | |
Overview: | |
Init the 2D convolution residual block. | |
Arguments: | |
- in_channels (:obj:`int`): Number of channels in the input tensor. | |
- activation (:obj:`nn.Module`): The optional activation function. | |
- norm_type (:obj:`str`): Type of the normalization, default set to 'BN'(Batch Normalization), \ | |
supports ['BN', 'LN', 'IN', 'GN', 'SyncBN', None]. | |
- res_type (:obj:`str`): Type of residual block, supports ['basic', 'bottleneck', 'downsample'] | |
- bias (:obj:`bool`): Whether to add a learnable bias to the conv2d_block. default set to True. | |
- out_channels (:obj:`int`): Number of channels in the output tensor, default set to None, \ | |
which means out_channels = in_channels. | |
""" | |
super(ResBlock, self).__init__() | |
self.act = activation | |
assert res_type in ['basic', 'bottleneck', | |
'downsample'], 'residual type only support basic and bottleneck, not:{}'.format(res_type) | |
self.res_type = res_type | |
if out_channels is None: | |
out_channels = in_channels | |
if self.res_type == 'basic': | |
self.conv1 = conv2d_block( | |
in_channels, out_channels, 3, 1, 1, activation=self.act, norm_type=norm_type, bias=bias | |
) | |
self.conv2 = conv2d_block( | |
out_channels, out_channels, 3, 1, 1, activation=None, norm_type=norm_type, bias=bias | |
) | |
elif self.res_type == 'bottleneck': | |
self.conv1 = conv2d_block( | |
in_channels, out_channels, 1, 1, 0, activation=self.act, norm_type=norm_type, bias=bias | |
) | |
self.conv2 = conv2d_block( | |
out_channels, out_channels, 3, 1, 1, activation=self.act, norm_type=norm_type, bias=bias | |
) | |
self.conv3 = conv2d_block( | |
out_channels, out_channels, 1, 1, 0, activation=None, norm_type=norm_type, bias=bias | |
) | |
elif self.res_type == 'downsample': | |
self.conv1 = conv2d_block( | |
in_channels, out_channels, 3, 2, 1, activation=self.act, norm_type=norm_type, bias=bias | |
) | |
self.conv2 = conv2d_block( | |
out_channels, out_channels, 3, 1, 1, activation=None, norm_type=norm_type, bias=bias | |
) | |
self.conv3 = conv2d_block(in_channels, out_channels, 3, 2, 1, activation=None, norm_type=None, bias=bias) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Overview: | |
Return the redisual block output. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input tensor. | |
Returns: | |
- x (:obj:`torch.Tensor`): The resblock output tensor. | |
""" | |
identity = x | |
x = self.conv1(x) | |
x = self.conv2(x) | |
if self.res_type == 'bottleneck': | |
x = self.conv3(x) | |
elif self.res_type == 'downsample': | |
identity = self.conv3(identity) | |
x = self.act(x + identity) | |
return x | |
class ResFCBlock(nn.Module): | |
""" | |
Overview: | |
Residual Block with 2 fully connected layers. | |
x -> fc1 -> norm -> act -> fc2 -> norm -> act -> out | |
\_____________________________________/+ | |
Interfaces: | |
``__init__``, ``forward`` | |
""" | |
def __init__( | |
self, in_channels: int, activation: nn.Module = nn.ReLU(), norm_type: str = 'BN', dropout: float = None | |
): | |
""" | |
Overview: | |
Init the fully connected layer residual block. | |
Arguments: | |
- in_channels (:obj:`int`): The number of channels in the input tensor. | |
- activation (:obj:`nn.Module`): The optional activation function. | |
- norm_type (:obj:`str`): The type of the normalization, default set to 'BN'. | |
- dropout (:obj:`float`): The dropout rate, default set to None. | |
""" | |
super(ResFCBlock, self).__init__() | |
self.act = activation | |
if dropout is not None: | |
self.dropout = nn.Dropout(dropout) | |
else: | |
self.dropout = None | |
self.fc1 = fc_block(in_channels, in_channels, activation=self.act, norm_type=norm_type) | |
self.fc2 = fc_block(in_channels, in_channels, activation=None, norm_type=norm_type) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Overview: | |
Return the output of the redisual block. | |
Arguments: | |
- x (:obj:`torch.Tensor`): The input tensor. | |
Returns: | |
- x (:obj:`torch.Tensor`): The resblock output tensor. | |
""" | |
identity = x | |
x = self.fc1(x) | |
x = self.fc2(x) | |
x = self.act(x + identity) | |
if self.dropout is not None: | |
x = self.dropout(x) | |
return x | |