Spaces:
Sleeping
Sleeping
import torch | |
from typing import Optional, Callable | |
def levenshtein_distance( | |
pred: torch.LongTensor, | |
target: torch.LongTensor, | |
pred_extra: Optional[torch.Tensor] = None, | |
target_extra: Optional[torch.Tensor] = None, | |
extra_fn: Optional[Callable] = None | |
) -> torch.FloatTensor: | |
""" | |
Overview: | |
Levenshtein Distance, i.e. Edit Distance. | |
Arguments: | |
- pred (:obj:`torch.LongTensor`): The first tensor to calculate the distance, shape: (N1, ) (N1 >= 0). | |
- target (:obj:`torch.LongTensor`): The second tensor to calculate the distance, shape: (N2, ) (N2 >= 0). | |
- pred_extra (:obj:`Optional[torch.Tensor]`): Extra tensor to calculate the distance, only works when \ | |
``extra_fn`` is not ``None``. | |
- target_extra (:obj:`Optional[torch.Tensor]`): Extra tensor to calculate the distance, only works when \ | |
``extra_fn`` is not ``None``. | |
- extra_fn (:obj:`Optional[Callable]`): The distance function for ``pred_extra`` and \ | |
``target_extra``. If set to ``None``, this distance will not be considered. | |
Returns: | |
- distance (:obj:`torch.FloatTensor`): distance(scalar), shape: (1, ). | |
""" | |
assert (isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor)) | |
assert (pred.dtype == torch.long and target.dtype == torch.long), '{}\t{}'.format(pred.dtype, target.dtype) | |
assert (pred.device == target.device) | |
assert (type(pred_extra) == type(target_extra)) | |
if not extra_fn: | |
assert (not pred_extra) | |
N1, N2 = pred.shape[0], target.shape[0] | |
assert (N1 >= 0 and N2 >= 0) | |
if N1 == 0 or N2 == 0: | |
distance = max(N1, N2) | |
else: | |
dp_array = torch.zeros(N1, N2).float() | |
if extra_fn: | |
if pred[0] == target[0]: | |
extra = extra_fn(pred_extra[0], target_extra[0]) | |
else: | |
extra = 1. | |
dp_array[0, :] = torch.arange(0, N2) + extra | |
dp_array[:, 0] = torch.arange(0, N1) + extra | |
else: | |
dp_array[0, :] = torch.arange(0, N2) | |
dp_array[:, 0] = torch.arange(0, N1) | |
for i in range(1, N1): | |
for j in range(1, N2): | |
if pred[i] == target[j]: | |
if extra_fn: | |
dp_array[i, j] = dp_array[i - 1, j - 1] + extra_fn(pred_extra[i], target_extra[j]) | |
else: | |
dp_array[i, j] = dp_array[i - 1, j - 1] | |
else: | |
dp_array[i, j] = min(dp_array[i - 1, j] + 1, dp_array[i, j - 1] + 1, dp_array[i - 1, j - 1] + 1) | |
distance = dp_array[N1 - 1, N2 - 1] | |
return torch.FloatTensor([distance]).to(pred.device) | |
def hamming_distance(pred: torch.LongTensor, target: torch.LongTensor, weight=1.) -> torch.LongTensor: | |
""" | |
Overview: | |
Hamming Distance. | |
Arguments: | |
- pred (:obj:`torch.LongTensor`): Pred input, boolean vector(0 or 1). | |
- target (:obj:`torch.LongTensor`): Target input, boolean vector(0 or 1). | |
- weight (:obj:`torch.LongTensor`): Weight to multiply. | |
Returns: | |
- distance(:obj:`torch.LongTensor`): Distance (scalar), shape (1, ). | |
Shapes: | |
- pred & target (:obj:`torch.LongTensor`): shape :math:`(B, N)`, \ | |
while B is the batch size, N is the dimension | |
""" | |
assert (isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor)) | |
assert (pred.dtype == torch.long and target.dtype == torch.long) | |
assert (pred.device == target.device) | |
assert (pred.shape == target.shape) | |
return pred.ne(target).sum(dim=1).float().mul_(weight) | |