Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
class DataParallel(nn.DataParallel): | |
""" | |
Overview: | |
A wrapper class for nn.DataParallel. | |
Interfaces: | |
``__init__``, ``parameters`` | |
""" | |
def __init__(self, module, device_ids=None, output_device=None, dim=0): | |
""" | |
Overview: | |
Initialize the DataParallel object. | |
Arguments: | |
- module (:obj:`nn.Module`): The module to be parallelized. | |
- device_ids (:obj:`list`): The list of GPU ids. | |
- output_device (:obj:`int`): The output GPU id. | |
- dim (:obj:`int`): The dimension to be parallelized. | |
""" | |
super().__init__(module, device_ids=None, output_device=None, dim=0) | |
self.module = module | |
def parameters(self, recurse: bool = True): | |
""" | |
Overview: | |
Return the parameters of the module. | |
Arguments: | |
- recurse (:obj:`bool`): Whether to return the parameters of the submodules. | |
Returns: | |
- params (:obj:`generator`): The generator of the parameters. | |
""" | |
return self.module.parameters(recurse=True) | |