Spaces:
Sleeping
Sleeping
from typing import TYPE_CHECKING, Union, Callable, Optional | |
from ditk import logging | |
import numpy as np | |
import torch | |
from ding.utils import broadcast | |
from ding.framework import task | |
if TYPE_CHECKING: | |
from ding.framework import OnlineRLContext, OfflineRLContext | |
def termination_checker(max_env_step: Optional[int] = None, max_train_iter: Optional[int] = None) -> Callable: | |
if max_env_step is None: | |
max_env_step = np.inf | |
if max_train_iter is None: | |
max_train_iter = np.inf | |
def _check(ctx: Union["OnlineRLContext", "OfflineRLContext"]): | |
# ">" is better than ">=" when taking logger result into consideration | |
assert hasattr(ctx, "env_step") or hasattr(ctx, "train_iter"), "Context must have env_step or train_iter" | |
if hasattr(ctx, "env_step") and ctx.env_step > max_env_step: | |
task.finish = True | |
logging.info('Exceeded maximum number of env_step({}), program is terminated'.format(ctx.env_step)) | |
elif hasattr(ctx, "train_iter") and ctx.train_iter > max_train_iter: | |
task.finish = True | |
logging.info('Exceeded maximum number of train_iter({}), program is terminated'.format(ctx.train_iter)) | |
return _check | |
def ddp_termination_checker(max_env_step=None, max_train_iter=None, rank=0): | |
if rank == 0: | |
if max_env_step is None: | |
max_env_step = np.inf | |
if max_train_iter is None: | |
max_train_iter = np.inf | |
def _check(ctx): | |
if rank == 0: | |
if ctx.env_step > max_env_step: | |
finish = torch.ones(1).long().cuda() | |
logging.info('Exceeded maximum number of env_step({}), program is terminated'.format(ctx.env_step)) | |
elif ctx.train_iter > max_train_iter: | |
finish = torch.ones(1).long().cuda() | |
logging.info('Exceeded maximum number of train_iter({}), program is terminated'.format(ctx.train_iter)) | |
else: | |
finish = torch.LongTensor([task.finish]).cuda() | |
else: | |
finish = torch.zeros(1).long().cuda() | |
# broadcast finish result to other DDP workers | |
broadcast(finish, 0) | |
task.finish = finish.cpu().bool().item() | |
return _check | |