Spaces:
Sleeping
Sleeping
import gym | |
from tensorboardX import SummaryWriter | |
import copy | |
import easydict | |
import os | |
from ditk import logging | |
from ding.model import DQN | |
from ding.policy import DQNPolicy | |
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
from ding.data import DequeBuffer | |
from ding.config import compile_config | |
from ding.framework import task | |
from ding.framework.context import OnlineRLContext | |
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, \ | |
eps_greedy_handler, CkptSaver, eps_greedy_masker, sqil_data_pusher, data_pusher | |
from ding.utils import set_pkg_seed | |
from ding.entry import trex_collecting_data | |
from ding.reward_model import create_reward_model | |
from dizoo.classic_control.cartpole.config.cartpole_trex_dqn_config import main_config, create_config | |
def main(): | |
logging.getLogger().setLevel(logging.INFO) | |
demo_arg = easydict.EasyDict({'cfg': [main_config, create_config], 'seed': 0}) | |
trex_collecting_data(demo_arg) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True, renew_dir=False) | |
with task.start(async_mode=False, ctx=OnlineRLContext()): | |
collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
model = DQN(**cfg.policy.model) | |
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
policy = DQNPolicy(cfg.policy, model=model) | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
reward_model = create_reward_model(copy.deepcopy(cfg), policy.collect_mode.get_attribute('device'), tb_logger) | |
reward_model.train() | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(eps_greedy_handler(cfg)) | |
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) | |
task.use(data_pusher(cfg, buffer_)) | |
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_, reward_model)) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.run() | |
if __name__ == "__main__": | |
main() | |