Spaces:
Sleeping
Sleeping
""" | |
# Example of PPO pipeline | |
Use the pipeline on a single process: | |
> python3 -u ding/example/ppo.py | |
Use the pipeline on multiple processes: | |
We surpose there are N processes (workers) = 1 learner + 1 evaluator + (N-2) collectors | |
## First Example —— Execute on one machine with multi processes. | |
Execute 4 processes with 1 learner + 1 evaluator + 2 collectors | |
Remember to keep them connected by mesh to ensure that they can exchange information with each other. | |
> ditask --package . --main ding.example.ppo.main --parallel-workers 4 --topology mesh | |
""" | |
import gym | |
from ditk import logging | |
from ding.model import VAC | |
from ding.policy import PPOPolicy | |
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
from ding.data import DequeBuffer | |
from ding.config import compile_config | |
from ding.framework import task, ding_init | |
from ding.framework.context import OnlineRLContext | |
from ding.framework.middleware import multistep_trainer, StepCollector, interaction_evaluator, CkptSaver, \ | |
gae_estimator, online_logger, ContextExchanger, ModelExchanger | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.cartpole.config.cartpole_ppo_config import main_config, create_config | |
def main(): | |
logging.getLogger().setLevel(logging.INFO) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) | |
ding_init(cfg) | |
with task.start(async_mode=False, ctx=OnlineRLContext()): | |
collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
model = VAC(**cfg.policy.model) | |
policy = PPOPolicy(cfg.policy, model=model) | |
# Consider the case with multiple processes | |
if task.router.is_active: | |
# You can use labels to distinguish between workers with different roles, | |
# here we use node_id to distinguish. | |
if task.router.node_id == 0: | |
task.add_role(task.role.LEARNER) | |
elif task.router.node_id == 1: | |
task.add_role(task.role.EVALUATOR) | |
else: | |
task.add_role(task.role.COLLECTOR) | |
# Sync their context and model between each worker. | |
task.use(ContextExchanger(skip_n_iter=1)) | |
task.use(ModelExchanger(model)) | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) | |
task.use(gae_estimator(cfg, policy.collect_mode)) | |
task.use(multistep_trainer(policy.learn_mode, log_freq=50)) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.use(online_logger(train_show_freq=3)) | |
task.run() | |
if __name__ == "__main__": | |
main() | |