Spaces:
Sleeping
Sleeping
""" | |
# Example of DQN pipeline | |
Use the pipeline on a single process: | |
> python3 -u ding/example/dqn.py | |
Use the pipeline on multiple processes: | |
We surpose there are N processes (workers) = 1 learner + 1 evaluator + (N-2) collectors | |
## First Example —— Execute on one machine with multi processes. | |
Execute 4 processes with 1 learner + 1 evaluator + 2 collectors | |
Remember to keep them connected by mesh to ensure that they can exchange information with each other. | |
> ditask --package . --main ding.example.dqn.main --parallel-workers 4 --topology mesh | |
## Second Example —— Execute on multiple machines. | |
1. Execute 1 learner + 1 evaluator on one machine. | |
> ditask --package . --main ding.example.dqn.main --parallel-workers 2 --topology mesh --node-ids 0 --ports 50515 | |
2. Execute 2 collectors on another machine. (Suppose the ip of the first machine is 127.0.0.1). | |
Here we use `alone` topology instead of `mesh` because the collectors do not need communicate with each other. | |
Remember the `node_ids` cannot be duplicated with the learner, evaluator processes. | |
And remember to set the `ports` (should not conflict with others) and `attach_to` parameters. | |
The value of the `attach_to` parameter should be obtained from the log of the | |
process started earlier (e.g. 'NNG listen on tcp://10.0.0.4:50515'). | |
> ditask --package . --main ding.example.dqn.main --parallel-workers 2 --topology alone --node-ids 2 \ | |
--ports 50517 --attach-to tcp://10.0.0.4:50515,tcp://127.0.0.1:50516 | |
3. You can repeat step 2 to start more collectors on other machines. | |
""" | |
import gym | |
from ditk import logging | |
from ding.data.model_loader import FileModelLoader | |
from ding.data.storage_loader import FileStorageLoader | |
from ding.model import DQN | |
from ding.policy import DQNPolicy | |
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
from ding.data import DequeBuffer | |
from ding.config import compile_config | |
from ding.framework import task, ding_init | |
from ding.framework.context import OnlineRLContext | |
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \ | |
eps_greedy_handler, CkptSaver, ContextExchanger, ModelExchanger, online_logger | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.cartpole.config.cartpole_dqn_config import main_config, create_config | |
def main(): | |
logging.getLogger().setLevel(logging.INFO) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True, save_cfg=task.router.node_id == 0) | |
ding_init(cfg) | |
with task.start(async_mode=False, ctx=OnlineRLContext()): | |
collector_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.collector_env_num)], | |
cfg=cfg.env.manager | |
) | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: DingEnvWrapper(gym.make("CartPole-v0")) for _ in range(cfg.env.evaluator_env_num)], | |
cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
model = DQN(**cfg.policy.model) | |
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size) | |
policy = DQNPolicy(cfg.policy, model=model) | |
# Consider the case with multiple processes | |
if task.router.is_active: | |
# You can use labels to distinguish between workers with different roles, | |
# here we use node_id to distinguish. | |
if task.router.node_id == 0: | |
task.add_role(task.role.LEARNER) | |
elif task.router.node_id == 1: | |
task.add_role(task.role.EVALUATOR) | |
else: | |
task.add_role(task.role.COLLECTOR) | |
# Sync their context and model between each worker. | |
task.use(ContextExchanger(skip_n_iter=1)) | |
task.use(ModelExchanger(model)) | |
# Here is the part of single process pipeline. | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(eps_greedy_handler(cfg)) | |
task.use(StepCollector(cfg, policy.collect_mode, collector_env)) | |
task.use(data_pusher(cfg, buffer_)) | |
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_)) | |
task.use(online_logger(train_show_freq=10)) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.run() | |
if __name__ == "__main__": | |
main() | |