Spaces:
Sleeping
Sleeping
import gym | |
from ditk import logging | |
from ding.model import QAC | |
from ding.policy import CQLPolicy | |
from ding.envs import DingEnvWrapper, BaseEnvManagerV2 | |
from ding.data import create_dataset | |
from ding.config import compile_config | |
from ding.framework import task, ding_init | |
from ding.framework.context import OfflineRLContext | |
from ding.framework.middleware import interaction_evaluator, trainer, CkptSaver, offline_data_fetcher, offline_logger | |
from ding.utils import set_pkg_seed | |
from dizoo.classic_control.pendulum.envs.pendulum_env import PendulumEnv | |
from dizoo.classic_control.pendulum.config.pendulum_cql_config import main_config, create_config | |
def main(): | |
# If you don't have offline data, you need to prepare if first and set the data_path in config | |
# For demostration, we also can train a RL policy (e.g. SAC) and collect some data | |
logging.getLogger().setLevel(logging.INFO) | |
cfg = compile_config(main_config, create_cfg=create_config, auto=True) | |
ding_init(cfg) | |
with task.start(async_mode=False, ctx=OfflineRLContext()): | |
evaluator_env = BaseEnvManagerV2( | |
env_fn=[lambda: PendulumEnv(cfg.env) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager | |
) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
dataset = create_dataset(cfg) | |
model = QAC(**cfg.policy.model) | |
policy = CQLPolicy(cfg.policy, model=model) | |
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env)) | |
task.use(offline_data_fetcher(cfg, dataset)) | |
task.use(trainer(cfg, policy.learn_mode)) | |
task.use(CkptSaver(policy, cfg.exp_name, train_freq=100)) | |
task.use(offline_logger()) | |
task.run() | |
if __name__ == "__main__": | |
main() | |