Spaces:
Sleeping
Sleeping
from typing import Union, Optional, List, Any, Tuple | |
import torch | |
import os | |
from functools import partial | |
from tensorboardX import SummaryWriter | |
from copy import deepcopy | |
from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \ | |
get_buffer_cls, create_serial_collector | |
from ding.world_model import WorldModel | |
from ding.worker import IBuffer | |
from ding.envs import get_vec_env_setting, create_env_manager | |
from ding.config import read_config, compile_config | |
from ding.utils import set_pkg_seed, deep_merge_dicts | |
from ding.policy import create_policy | |
from ding.world_model import create_world_model | |
from ding.entry.utils import random_collect | |
def mbrl_entry_setup( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
) -> Tuple: | |
if isinstance(input_cfg, str): | |
cfg, create_cfg = read_config(input_cfg) | |
else: | |
cfg, create_cfg = deepcopy(input_cfg) | |
create_cfg.policy.type = create_cfg.policy.type + '_command' | |
env_fn = None if env_setting is None else env_setting[0] | |
cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True) | |
if env_setting is None: | |
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env) | |
else: | |
env_fn, collector_env_cfg, evaluator_env_cfg = env_setting | |
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]) | |
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg]) | |
collector_env.seed(cfg.seed) | |
evaluator_env.seed(cfg.seed, dynamic_seed=False) | |
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda) | |
# create logger | |
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial')) | |
# create world model | |
world_model = create_world_model(cfg.world_model, env_fn(cfg.env), tb_logger) | |
# create policy | |
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command']) | |
# create worker | |
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name) | |
collector = create_serial_collector( | |
cfg.policy.collect.collector, | |
env=collector_env, | |
policy=policy.collect_mode, | |
tb_logger=tb_logger, | |
exp_name=cfg.exp_name | |
) | |
evaluator = InteractionSerialEvaluator( | |
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name | |
) | |
env_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) | |
commander = BaseSerialCommander( | |
cfg.policy.other.commander, learner, collector, evaluator, env_buffer, policy.command_mode | |
) | |
return ( | |
cfg, | |
policy, | |
world_model, | |
env_buffer, | |
learner, | |
collector, | |
collector_env, | |
evaluator, | |
commander, | |
tb_logger, | |
) | |
def create_img_buffer( | |
cfg: dict, input_cfg: Union[str, Tuple[dict, dict]], world_model: WorldModel, tb_logger: 'SummaryWriter' | |
) -> IBuffer: # noqa | |
if isinstance(input_cfg, str): | |
_, create_cfg = read_config(input_cfg) | |
else: | |
_, create_cfg = input_cfg | |
img_buffer_cfg = cfg.world_model.other.imagination_buffer | |
img_buffer_cfg.update(create_cfg.imagination_buffer) | |
buffer_cls = get_buffer_cls(img_buffer_cfg) | |
cfg.world_model.other.imagination_buffer.update(deep_merge_dicts(buffer_cls.default_config(), img_buffer_cfg)) | |
if img_buffer_cfg.type == 'elastic': | |
img_buffer_cfg.set_buffer_size = world_model.buffer_size_scheduler | |
img_buffer = create_buffer(cfg.world_model.other.imagination_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name) | |
return img_buffer | |
def serial_pipeline_dyna( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
max_train_iter: Optional[int] = int(1e10), | |
max_env_step: Optional[int] = int(1e10), | |
) -> 'Policy': # noqa | |
""" | |
Overview: | |
Serial pipeline entry for dyna-style model-based RL. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. | |
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
""" | |
cfg, policy, world_model, env_buffer, learner, collector, collector_env, evaluator, commander, tb_logger = \ | |
mbrl_entry_setup(input_cfg, seed, env_setting, model) | |
img_buffer = create_img_buffer(cfg, input_cfg, world_model, tb_logger) | |
learner.call_hook('before_run') | |
if cfg.policy.get('random_collect_size', 0) > 0: | |
random_collect(cfg.policy, policy, collector, collector_env, commander, env_buffer) | |
while True: | |
collect_kwargs = commander.step() | |
# eval the policy | |
if evaluator.should_eval(collector.envstep): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
# fill environment buffer | |
data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) | |
env_buffer.push(data, cur_collector_envstep=collector.envstep) | |
# eval&train world model and fill imagination buffer | |
if world_model.should_eval(collector.envstep): | |
world_model.eval(env_buffer, collector.envstep, learner.train_iter) | |
if world_model.should_train(collector.envstep): | |
world_model.train(env_buffer, collector.envstep, learner.train_iter) | |
world_model.fill_img_buffer( | |
policy.collect_mode, env_buffer, img_buffer, collector.envstep, learner.train_iter | |
) | |
for i in range(cfg.policy.learn.update_per_collect): | |
batch_size = learner.policy.get_attribute('batch_size') | |
train_data = world_model.sample(env_buffer, img_buffer, batch_size, learner.train_iter) | |
learner.train(train_data, collector.envstep) | |
if cfg.policy.on_policy: | |
# On-policy algorithm must clear the replay buffer. | |
env_buffer.clear() | |
img_buffer.clear() | |
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
break | |
learner.call_hook('after_run') | |
return policy | |
def serial_pipeline_dream( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
max_train_iter: Optional[int] = int(1e10), | |
max_env_step: Optional[int] = int(1e10), | |
) -> 'Policy': # noqa | |
""" | |
Overview: | |
Serial pipeline entry for dreamer-style model-based RL. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. | |
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
""" | |
cfg, policy, world_model, env_buffer, learner, collector, collector_env, evaluator, commander, tb_logger = \ | |
mbrl_entry_setup(input_cfg, seed, env_setting, model) | |
learner.call_hook('before_run') | |
if cfg.policy.get('random_collect_size', 0) > 0: | |
random_collect(cfg.policy, policy, collector, collector_env, commander, env_buffer) | |
while True: | |
collect_kwargs = commander.step() | |
# eval the policy | |
if evaluator.should_eval(collector.envstep): | |
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep) | |
if stop: | |
break | |
# fill environment buffer | |
data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs) | |
env_buffer.push(data, cur_collector_envstep=collector.envstep) | |
# eval&train world model and fill imagination buffer | |
if world_model.should_eval(collector.envstep): | |
world_model.eval(env_buffer, collector.envstep, learner.train_iter) | |
if world_model.should_train(collector.envstep): | |
world_model.train(env_buffer, collector.envstep, learner.train_iter) | |
update_per_collect = cfg.policy.learn.update_per_collect // world_model.rollout_length_scheduler( | |
collector.envstep | |
) | |
update_per_collect = max(1, update_per_collect) | |
for i in range(update_per_collect): | |
batch_size = learner.policy.get_attribute('batch_size') | |
train_data = env_buffer.sample(batch_size, learner.train_iter) | |
# dreamer-style: use pure on-policy imagined rollout to train policy, | |
# which depends on the current envstep to decide the rollout length | |
learner.train( | |
train_data, collector.envstep, policy_kwargs=dict(world_model=world_model, envstep=collector.envstep) | |
) | |
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
break | |
learner.call_hook('after_run') | |
return policy | |
def serial_pipeline_dreamer( | |
input_cfg: Union[str, Tuple[dict, dict]], | |
seed: int = 0, | |
env_setting: Optional[List[Any]] = None, | |
model: Optional[torch.nn.Module] = None, | |
max_train_iter: Optional[int] = int(1e10), | |
max_env_step: Optional[int] = int(1e10), | |
) -> 'Policy': # noqa | |
""" | |
Overview: | |
Serial pipeline entry for dreamerv3. | |
Arguments: | |
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \ | |
``str`` type means config file path. \ | |
``Tuple[dict, dict]`` type means [user_config, create_cfg]. | |
- seed (:obj:`int`): Random seed. | |
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \ | |
``BaseEnv`` subclass, collector env config, and evaluator env config. | |
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module. | |
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training. | |
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps. | |
Returns: | |
- policy (:obj:`Policy`): Converged policy. | |
""" | |
cfg, policy, world_model, env_buffer, learner, collector, collector_env, evaluator, commander, tb_logger = \ | |
mbrl_entry_setup(input_cfg, seed, env_setting, model) | |
learner.call_hook('before_run') | |
# prefill environment buffer | |
if cfg.policy.get('random_collect_size', 0) > 0: | |
cfg.policy.random_collect_size = cfg.policy.random_collect_size // cfg.policy.collect.unroll_len | |
random_collect(cfg.policy, policy, collector, collector_env, commander, env_buffer) | |
while True: | |
collect_kwargs = commander.step() | |
# eval the policy | |
if evaluator.should_eval(collector.envstep): | |
stop, reward = evaluator.eval( | |
learner.save_checkpoint, | |
learner.train_iter, | |
collector.envstep, | |
policy_kwargs=dict(world_model=world_model) | |
) | |
if stop: | |
break | |
# train world model and fill imagination buffer | |
steps = ( | |
cfg.world_model.pretrain | |
if world_model.should_pretrain() else int(world_model.should_train(collector.envstep)) | |
) | |
for _ in range(steps): | |
batch_size = learner.policy.get_attribute('batch_size') | |
batch_length = cfg.policy.learn.batch_length | |
post, context = world_model.train( | |
env_buffer, collector.envstep, learner.train_iter, batch_size, batch_length | |
) | |
start = post | |
learner.train( | |
start, collector.envstep, policy_kwargs=dict(world_model=world_model, envstep=collector.envstep) | |
) | |
# fill environment buffer | |
data = collector.collect( | |
train_iter=learner.train_iter, | |
policy_kwargs=dict(world_model=world_model, envstep=collector.envstep, **collect_kwargs) | |
) | |
env_buffer.push(data, cur_collector_envstep=collector.envstep) | |
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter: | |
break | |
learner.call_hook('after_run') | |
return policy | |