import streamlit as st from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("google/mt5-base", padding_side="left", use_fast=False) model = AutoModelForSeq2SeqLM.from_pretrained("google/mt5-base") return tokenizer, model st.title("Український Чат-бот") if "history" not in st.session_state: st.session_state.history = [] if "user_input" not in st.session_state: st.session_state.user_input = "" tokenizer, model = load_model() def send_message(): if st.session_state.user_input: inputs = tokenizer(st.session_state.history + [st.session_state.user_input], return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model.generate(**inputs, max_length=100) response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.session_state.history.extend([st.session_state.user_input, response]) st.session_state.user_input = "" def update_user_input(): st.session_state.user_input = st.session_state.temp_user_input st.text_input("Ви:", key="temp_user_input", on_change=update_user_input) if st.button("Надіслати"): send_message() # Обробка натискання Enter if st.session_state.get("temp_user_input") and st.session_state.get("last_input", "") != st.session_state.get("temp_user_input"): st.session_state["last_input"] = st.session_state["temp_user_input"] send_message() if st.session_state.history: for i in range(0, len(st.session_state.history), 2): st.write(f"Ви: {st.session_state.history[i]}") if i + 1 < len(st.session_state.history): st.write(f"Бот: {st.session_state.history[i+1]}")