File size: 45,230 Bytes
2b40e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265


# Cell 2: Import necessary libraries
import os
import re
import json
import time
import nltk
import spacy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from IPython.display import display, HTML, clear_output
from datetime import datetime
from tqdm.auto import tqdm
import tempfile
import shutil
import logging
import warnings
from pathlib import Path
import gradio as gr

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger("UnstructuredApp")

# Suppress warnings
warnings.filterwarnings('ignore')

# Download required NLTK data
nltk.download('punkt', quiet=True)
nltk.download('stopwords', quiet=True)
nltk.download('wordnet', quiet=True)

# Load spaCy model
nlp = spacy.load("en_core_web_sm")

# Import Unstructured components
from unstructured.partition.auto import partition
from unstructured.partition.pdf import partition_pdf
from unstructured.partition.html import partition_html
from unstructured.partition.pptx import partition_pptx
from unstructured.partition.docx import partition_docx
from unstructured.partition.xlsx import partition_xlsx
from unstructured.partition.image import partition_image
from unstructured.partition.email import partition_email
from unstructured.partition.json import partition_json
from unstructured.partition.csv import partition_csv
from unstructured.partition.xml import partition_xml
from unstructured.cleaners.core import (
    clean_extra_whitespace, 
    replace_unicode_quotes, 
    clean_bullets, 
    group_broken_paragraphs,
    clean_dashes,
    remove_punctuation
)
# Use regex patterns instead of unavailable extract functions
import re
from unstructured.staging.base import elements_to_json
from unstructured.chunking.title import chunk_by_title
from unstructured.staging.base import convert_to_dict
from unstructured.documents.elements import (
    Title, Text, NarrativeText, ListItem, 
    Table, Image, PageBreak, Footer, Header, 
    Address
)

# Define our own regex patterns for extraction
EMAIL_PATTERN = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
URL_PATTERN = r'https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+[/\w\.-]*/?'
PHONE_PATTERN = r'(\+\d{1,3}[- ]?)?\(?\d{3}\)?[- ]?\d{3}[- ]?\d{4}'
IP_PATTERN = r'\b(?:\d{1,3}\.){3}\d{1,3}\b'
from sentence_transformers import SentenceTransformer, util

# Cell 3: Define utility functions for file handling and processing
def create_temp_dir():
    """Create a temporary directory for file uploads"""
    temp_dir = tempfile.mkdtemp()
    return temp_dir

def save_uploaded_file(file, temp_dir):
    """Save uploaded file to temporary directory"""
    if file is None:
        return None
    
    file_path = os.path.join(temp_dir, file.name)
    with open(file_path, 'wb') as f:
        f.write(file.read())
    return file_path

def get_file_extension(file_path):
    """Get file extension from path"""
    if file_path is None:
        return None
    return os.path.splitext(file_path)[1].lower()

def identify_file_type(file_path):
    """Identify file type based on extension"""
    if file_path is None:
        return None
        
    ext = get_file_extension(file_path)
    file_types = {
        '.pdf': 'PDF',
        '.html': 'HTML',
        '.htm': 'HTML',
        '.docx': 'DOCX',
        '.doc': 'DOC',
        '.pptx': 'PPTX',
        '.ppt': 'PPT',
        '.xlsx': 'XLSX',
        '.xls': 'XLS',
        '.txt': 'TXT',
        '.csv': 'CSV',
        '.json': 'JSON',
        '.xml': 'XML',
        '.eml': 'EMAIL',
        '.msg': 'EMAIL',
        '.jpg': 'IMAGE',
        '.jpeg': 'IMAGE',
        '.png': 'IMAGE',
        '.tiff': 'IMAGE',
        '.tif': 'IMAGE'
    }
    
    return file_types.get(ext, 'UNKNOWN')

def partition_file(file_path, partition_kwargs=None):
    """
    Partition file using appropriate method based on file type
    
    Args:
        file_path: Path to the file
        partition_kwargs: Dictionary of kwargs for partition function
        
    Returns:
        List of elements
    """
    if file_path is None:
        return []
        
    if partition_kwargs is None:
        partition_kwargs = {}
    
    file_type = identify_file_type(file_path)
    
    try:
        if file_type == 'PDF':
            # Add PDF-specific kwargs
            pdf_kwargs = {
                'extract_images': True,
                'infer_table_structure': True,
                'include_page_breaks': True,
                **partition_kwargs
            }
            return partition_pdf(filename=file_path, **pdf_kwargs)
        
        elif file_type == 'HTML':
            # Add HTML-specific kwargs
            html_kwargs = {
                'extract_links': True,
                **partition_kwargs
            }
            return partition_html(filename=file_path, **html_kwargs)
        
        elif file_type == 'DOCX':
            return partition_docx(filename=file_path, **partition_kwargs)
        
        elif file_type == 'PPTX':
            return partition_pptx(filename=file_path, **partition_kwargs)
        
        elif file_type == 'XLSX':
            return partition_xlsx(filename=file_path, **partition_kwargs)
        
        elif file_type == 'IMAGE':
            # Add image-specific kwargs
            image_kwargs = {
                'strategy': 'hi_res',
                'languages': ['eng'],
                **partition_kwargs
            }
            return partition_image(filename=file_path, **image_kwargs)
        
        elif file_type == 'EMAIL':
            return partition_email(filename=file_path, **partition_kwargs)
        
        elif file_type == 'JSON':
            return partition_json(filename=file_path, **partition_kwargs)
        
        elif file_type == 'CSV':
            return partition_csv(filename=file_path, **partition_kwargs)
        
        elif file_type == 'XML':
            return partition_xml(filename=file_path, **partition_kwargs)
        
        else:
            # Use auto partition for other file types
            return partition(filename=file_path, **partition_kwargs)
            
    except Exception as e:
        logger.error(f"Error partitioning file {file_path}: {str(e)}")
        raise Exception(f"Error processing {file_path}: {str(e)}")

# Cell 4: Define element cleaning and processing functions
def clean_elements(elements, cleaning_options=None):
    """
    Clean elements based on selected options
    
    Args:
        elements: List of elements to clean
        cleaning_options: Dictionary of cleaning options to apply
    
    Returns:
        Cleaned elements
    """
    if cleaning_options is None or not elements:
        return elements
    
    cleaned_elements = []
    for element in elements:
        # Skip non-text elements
        if not hasattr(element, 'text'):
            cleaned_elements.append(element)
            continue
        
        # Apply cleaning operations based on selected options
        cleaned_text = element.text
        
        if cleaning_options.get('extra_whitespace', False):
            cleaned_text = clean_extra_whitespace(cleaned_text)
        
        if cleaning_options.get('unicode_quotes', False):
            cleaned_text = replace_unicode_quotes(cleaned_text)
        
        if cleaning_options.get('bullets', False):
            cleaned_text = clean_bullets(cleaned_text)
        
        if cleaning_options.get('dashes', False):
            cleaned_text = clean_dashes(cleaned_text)
        
        if cleaning_options.get('group_paragraphs', False):
            cleaned_text = group_broken_paragraphs(cleaned_text)
            
        if cleaning_options.get('remove_punctuation', False):
            cleaned_text = remove_punctuation(cleaned_text)
        
        # Update the element's text
        element.text = cleaned_text
        cleaned_elements.append(element)
    
    return cleaned_elements

def extract_entities(elements, extraction_options=None):
    """
    Extract entities from elements based on selected options using regex
    
    Args:
        elements: List of elements
        extraction_options: Dictionary of extraction options to apply
    
    Returns:
        Elements with extracted entities in metadata
    """
    if extraction_options is None or not elements:
        return elements
    
    processed_elements = []
    
    for element in elements:
        # Skip non-text elements
        if not hasattr(element, 'text'):
            processed_elements.append(element)
            continue
        
        # Initialize metadata if doesn't exist
        if not hasattr(element, 'metadata'):
            element.metadata = {}
            
        element.metadata['extracted_entities'] = {}
        
        # Extract entities based on selected options using regex
        if extraction_options.get('emails', False):
            element.metadata['extracted_entities']['emails'] = re.findall(EMAIL_PATTERN, element.text)
        
        if extraction_options.get('urls', False):
            element.metadata['extracted_entities']['urls'] = re.findall(URL_PATTERN, element.text)
        
        if extraction_options.get('phone_numbers', False):
            element.metadata['extracted_entities']['phone_numbers'] = re.findall(PHONE_PATTERN, element.text)
        
        if extraction_options.get('ip_addresses', False):
            element.metadata['extracted_entities']['ip_addresses'] = re.findall(IP_PATTERN, element.text)
        
        # Use spaCy for NER if selected
        if extraction_options.get('ner', False):
            doc = nlp(element.text)
            element.metadata['extracted_entities']['named_entities'] = [
                {'text': ent.text, 'label': ent.label_} for ent in doc.ents
            ]
        
        processed_elements.append(element)
    
    return processed_elements

def categorize_elements(elements):
    """
    Categorize elements by type and provide statistics
    
    Args:
        elements: List of elements
    
    Returns:
        Dictionary with element statistics
    """
    if not elements:
        return {}
    
    element_types = {}
    for element in elements:
        element_type = type(element).__name__
        if element_type not in element_types:
            element_types[element_type] = 0
        element_types[element_type] += 1
    
    total_elements = len(elements)
    element_stats = {
        'total': total_elements,
        'by_type': element_types,
        'type_percentages': {k: round(v/total_elements*100, 2) for k, v in element_types.items()}
    }
    
    return element_stats

def chunk_elements(elements, chunking_method, **kwargs):
    """
    Chunk elements using specified method
    
    Args:
        elements: List of elements to chunk
        chunking_method: Method to use for chunking
        **kwargs: Additional arguments for chunking method
    
    Returns:
        List of chunks
    """
    if not elements:
        return []
    
    try:
        if chunking_method == 'by_title':
            return chunk_by_title(elements, **kwargs)
        elif chunking_method == 'by_token':
            # Implement a simple version of token-based chunking
            from unstructured.chunking.base import Chunk
            
            max_chars = kwargs.get('max_characters', 2000)
            
            chunks = []
            current_chunk = []
            current_char_count = 0
            
            for element in elements:
                if not hasattr(element, 'text'):
                    # If the element has no text, just add it to the current chunk
                    current_chunk.append(element)
                    continue
                
                element_text_len = len(element.text)
                
                # If adding this element would exceed the max chars, start a new chunk
                if current_char_count + element_text_len > max_chars and current_chunk:
                    chunks.append(Chunk(elements=current_chunk))
                    current_chunk = [element]
                    current_char_count = element_text_len
                else:
                    current_chunk.append(element)
                    current_char_count += element_text_len
            
            # Add the last chunk if it's not empty
            if current_chunk:
                chunks.append(Chunk(elements=current_chunk))
            
            return chunks
        else:
            # Default to title chunking
            return chunk_by_title(elements, **kwargs)
    except Exception as e:
        logger.error(f"Error chunking elements: {str(e)}")
        # If chunking fails, return single chunk with all elements
        from unstructured.chunking.base import Chunk
        return [Chunk(elements=elements)]

# Cell 5: Define functions for visualization and analysis
def visualize_element_distribution(element_stats):
    """
    Create a bar chart of element type distribution
    
    Args:
        element_stats: Dictionary with element statistics
    
    Returns:
        Plotly figure
    """
    if not element_stats or 'by_type' not in element_stats:
        return None
    
    element_types = list(element_stats['by_type'].keys())
    element_counts = list(element_stats['by_type'].values())
    
    fig = px.bar(
        x=element_types, 
        y=element_counts,
        labels={'x': 'Element Type', 'y': 'Count'},
        title='Distribution of Element Types',
        color=element_types,
        text=element_counts
    )
    
    fig.update_layout(
        xaxis_title='Element Type',
        yaxis_title='Count',
        showlegend=False
    )
    
    return fig

def generate_embeddings(chunks, model_name):
    """
    Generate embeddings for chunks
    
    Args:
        chunks: List of chunks
        model_name: Name of the embedding model to use
    
    Returns:
        Dictionary with chunk texts and embeddings
    """
    if not chunks:
        return {}
    
    # Load model
    try:
        model = SentenceTransformer(model_name)
    except Exception as e:
        logger.error(f"Error loading embedding model: {str(e)}")
        raise Exception(f"Error loading embedding model {model_name}: {str(e)}")
    
    # Generate text for embedding
    chunk_texts = []
    for chunk in chunks:
        chunk_text = "\n".join([e.text for e in chunk.elements if hasattr(e, 'text')])
        chunk_texts.append(chunk_text)
    
    # Generate embeddings
    embeddings = model.encode(chunk_texts, show_progress_bar=True)
    
    return {
        'texts': chunk_texts,
        'embeddings': embeddings,
        'model': model_name,
        'dimension': embeddings.shape[1]
    }

def visualize_embeddings_tsne(embedding_data):
    """
    Visualize embeddings using t-SNE
    
    Args:
        embedding_data: Dictionary with embeddings
    
    Returns:
        Plotly figure
    """
    if not embedding_data or 'embeddings' not in embedding_data:
        return None
    
    from sklearn.manifold import TSNE
    
    # Apply t-SNE to reduce dimensions for visualization
    tsne = TSNE(n_components=2, random_state=42)
    reduced_embeddings = tsne.fit_transform(embedding_data['embeddings'])
    
    # Create DataFrame for plotting
    df = pd.DataFrame({
        'x': reduced_embeddings[:, 0],
        'y': reduced_embeddings[:, 1],
        'chunk_id': [f"Chunk {i+1}" for i in range(len(reduced_embeddings))]
    })
    
    # Add text length as size
    df['text_length'] = [len(text) for text in embedding_data['texts']]
    
    # Normalize text length for sizing
    max_length = df['text_length'].max()
    df['size'] = df['text_length'].apply(lambda x: max(10, min(40, x / max_length * 40)))
    
    # Create plot
    fig = px.scatter(
        df, x='x', y='y', 
        text='chunk_id',
        size='size',
        title=f"t-SNE Visualization of Document Embeddings ({embedding_data['model']})",
        hover_data=['text_length']
    )
    
    fig.update_traces(
        textposition='top center',
        marker=dict(sizemode='diameter')
    )
    
    fig.update_layout(
        xaxis_title='t-SNE Dimension 1',
        yaxis_title='t-SNE Dimension 2',
        showlegend=False
    )
    
    return fig

def generate_similarity_matrix(embedding_data):
    """
    Generate similarity matrix for chunks
    
    Args:
        embedding_data: Dictionary with embeddings
    
    Returns:
        Plotly figure with similarity matrix
    """
    if not embedding_data or 'embeddings' not in embedding_data:
        return None
    
    # Calculate cosine similarity
    embeddings = embedding_data['embeddings']
    similarity_matrix = util.cos_sim(embeddings, embeddings).numpy()
    
    # Create labels for each chunk
    labels = [f"Chunk {i+1}" for i in range(similarity_matrix.shape[0])]
    
    # Create heatmap
    fig = go.Figure(data=go.Heatmap(
        z=similarity_matrix,
        x=labels,
        y=labels,
        colorscale='Viridis',
        zmin=0, zmax=1
    ))
    
    fig.update_layout(
        title='Semantic Similarity Between Chunks',
        xaxis_title='Chunk ID',
        yaxis_title='Chunk ID',
    )
    
    return fig

def extract_top_keywords(chunks, top_n=10):
    """
    Extract top keywords from chunks using TF-IDF
    
    Args:
        chunks: List of chunks
        top_n: Number of top keywords to extract
    
    Returns:
        Dictionary with top keywords for each chunk
    """
    if not chunks:
        return {}
    
    from sklearn.feature_extraction.text import TfidfVectorizer
    from nltk.corpus import stopwords
    
    # Get text from each chunk
    chunk_texts = []
    for chunk in chunks:
        chunk_text = " ".join([e.text for e in chunk.elements if hasattr(e, 'text')])
        chunk_texts.append(chunk_text)
    
    # Get English stopwords
    stop_words = set(stopwords.words('english'))
    
    # Initialize vectorizer
    vectorizer = TfidfVectorizer(
        max_features=1000,
        stop_words=stop_words,
        ngram_range=(1, 2)
    )
    
    # Fit vectorizer
    try:
        tfidf_matrix = vectorizer.fit_transform(chunk_texts)
    except Exception as e:
        logger.error(f"Error extracting keywords: {str(e)}")
        return {}
    
    # Get feature names
    feature_names = vectorizer.get_feature_names_out()
    
    # Extract top keywords for each chunk
    top_keywords = {}
    for i, chunk_vec in enumerate(tfidf_matrix):
        # Convert sparse matrix to dense and get top indices
        dense = chunk_vec.todense()
        dense_list = dense.tolist()[0]
        sorted_indices = np.argsort(dense_list)[::-1][:top_n]
        
        # Get keywords and scores
        keywords = [(feature_names[idx], dense_list[idx]) for idx in sorted_indices]
        
        top_keywords[f"Chunk {i+1}"] = keywords
    
    return top_keywords

def visualize_keywords(keywords_data):
    """
    Visualize top keywords across chunks
    
    Args:
        keywords_data: Dictionary with keywords for each chunk
    
    Returns:
        Plotly figure
    """
    if not keywords_data:
        return None
    
    # Prepare data for visualization
    data = []
    for chunk_id, keywords in keywords_data.items():
        for keyword, score in keywords:
            data.append({
                'chunk': chunk_id,
                'keyword': keyword,
                'score': score
            })
    
    # Create DataFrame
    df = pd.DataFrame(data)
    
    # Create heatmap
    pivot_df = df.pivot(index='keyword', columns='chunk', values='score')
    
    # Sort by average score
    pivot_df['avg'] = pivot_df.mean(axis=1)
    pivot_df = pivot_df.sort_values('avg', ascending=False).drop('avg', axis=1)
    
    # Create figure
    fig = px.imshow(
        pivot_df,
        labels=dict(x="Chunk", y="Keyword", color="TF-IDF Score"),
        x=pivot_df.columns,
        y=pivot_df.index,
        color_continuous_scale="Viridis",
        aspect="auto"
    )
    
    fig.update_layout(
        title='Top Keywords Across Chunks',
        height=600
    )
    
    return fig

# Cell 6: Define functions for the final output formats
def generate_final_output(chunks, embedding_data=None, processing_stats=None):
    """
    Generate final structured output
    
    Args:
        chunks: List of chunks
        embedding_data: Dictionary with embeddings
        processing_stats: Dictionary with processing statistics
    
    Returns:
        Dictionary with final structured data
    """
    if not chunks:
        return {}
    
    # Initialize final data structure
    final_data = {
        'metadata': {
            'timestamp': datetime.now().isoformat(),
            'num_chunks': len(chunks),
            'processing_stats': processing_stats or {}
        },
        'chunks': []
    }
    
    # Get embeddings if available
    embeddings = embedding_data.get('embeddings', []) if embedding_data else []
    
    # Process each chunk
    for i, chunk in enumerate(chunks):
        # Get text from chunk
        chunk_text = "\n".join([e.text for e in chunk.elements if hasattr(e, 'text')])
        
        # Get element types in chunk
        element_types = {}
        for e in chunk.elements:
            element_type = type(e).__name__
            if element_type not in element_types:
                element_types[element_type] = 0
            element_types[element_type] += 1
        
        # Add chunk data
        chunk_data = {
            'chunk_id': f"chunk_{i+1}",
            'metadata': {
                'element_types': element_types,
                'num_elements': len(chunk.elements),
                'text_length': len(chunk_text)
            },
            'text': chunk_text,
            'elements': [convert_to_dict(e) for e in chunk.elements]
        }
        
        # Add embedding if available
        if i < len(embeddings):
            chunk_data['embedding'] = embeddings[i].tolist()
        
        final_data['chunks'].append(chunk_data)
    
    return final_data

def format_for_qa(chunks):
    """
    Format chunks for question answering
    
    Args:
        chunks: List of chunks
    
    Returns:
        List of documents in format suitable for QA systems
    """
    if not chunks:
        return []
    
    qa_docs = []
    for i, chunk in enumerate(chunks):
        # Get text from chunk
        chunk_text = "\n".join([e.text for e in chunk.elements if hasattr(e, 'text')])
        
        # Create document
        doc = {
            'id': f"chunk_{i+1}",
            'content': chunk_text,
            'metadata': {
                'num_elements': len(chunk.elements),
                'element_types': [type(e).__name__ for e in chunk.elements]
            }
        }
        
        qa_docs.append(doc)
    
    return qa_docs

def format_for_transformers(chunks):
    """
    Format chunks for HuggingFace transformers
    
    Args:
        chunks: List of chunks
    
    Returns:
        Dictionary with data formatted for transformers
    """
    if not chunks:
        return {}
    
    # Create a simple format for transformers
    try:
        # Extract text from chunks
        texts = []
        for chunk in chunks:
            chunk_text = "\n".join([e.text for e in chunk.elements if hasattr(e, 'text')])
            texts.append(chunk_text)
        
        # Create dataset structure
        transformer_data = {
            "text": texts,
            "metadata": [{"chunk_id": f"chunk_{i}"} for i in range(len(texts))]
        }
        return transformer_data
    
    except Exception as e:
        logger.error(f"Error formatting for transformers: {str(e)}")
        return {}

def format_for_label_studio(elements):
    """
    Format elements for Label Studio
    
    Args:
        elements: List of elements
    
    Returns:
        Dictionary with data formatted for Label Studio
    """
    if not elements:
        return {}
    
    try:
        # Create a basic format for Label Studio
        label_studio_data = []
        for i, element in enumerate(elements):
            if hasattr(element, 'text'):
                label_studio_data.append({
                    "id": i,
                    "text": element.text,
                    "element_type": type(element).__name__,
                    "metadata": element.metadata if hasattr(element, 'metadata') else {}
                })
        
        return label_studio_data
    except Exception as e:
        logger.error(f"Error formatting for Label Studio: {str(e)}")
        return {}

# Cell 7: Build the Gradio interface components
def process_files(
    files,
    partition_options,
    cleaning_options,
    extraction_options,
    chunking_method,
    chunking_options,
    embedding_model,
    output_format
):
    """
    Main processing function for the Gradio interface
    
    Args:
        files: List of uploaded files
        partition_options: Dictionary of partitioning options
        cleaning_options: Dictionary of cleaning options
        extraction_options: Dictionary of extraction options
        chunking_method: Method to use for chunking
        chunking_options: Dictionary of chunking options
        embedding_model: Model to use for embeddings
        output_format: Format for final output
    
    Returns:
        Tuple of (
            status_html,
            log_html,
            element_stats,
            element_chart, 
            similarity_matrix,
            embedding_viz,
            keyword_viz,
            output_data
        )
    """
    # Create temp directory for uploads
    temp_dir = create_temp_dir()
    
    # Initialize status and logs
    status_html = "<div style='color: blue;'>Initializing processing pipeline...</div>"
    log_html = "<div style='font-family: monospace; height: 200px; overflow-y: auto;'>"
    log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Starting document processing pipeline\n"
    
    try:
        # Save uploaded files
        file_paths = []
        for file in files:
            if file is None:
                continue
            
            file_path = save_uploaded_file(file, temp_dir)
            file_paths.append(file_path)
            
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Saved {file.name} to temporary directory\n"
        
        if not file_paths:
            status_html = "<div style='color: red;'>No files were uploaded. Please upload at least one file.</div>"
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Error: No files were uploaded\n"
            log_html += "</div>"
            return status_html, log_html, None, None, None, None, None, None
        
        # Process each file
        all_elements = []
        for file_path in file_paths:
            file_name = os.path.basename(file_path)
            file_type = identify_file_type(file_path)
            
            status_html = f"<div style='color: blue;'>Processing {file_name} ({file_type})...</div>"
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Processing {file_name} ({file_type})\n"
            
            # Partition file
            partition_kwargs = {k: v for k, v in partition_options.items() if v}
            
            elements = partition_file(file_path, partition_kwargs)
            
            # Add source information to elements
            for element in elements:
                if not hasattr(element, 'metadata'):
                    element.metadata = {}
                
                element.metadata.update({
                    'source_filename': file_name,
                    'source_filetype': file_type
                })
            
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Extracted {len(elements)} elements from {file_name}\n"
            all_elements.extend(elements)
        
        # Process all elements
        status_html = "<div style='color: blue;'>Cleaning and processing elements...</div>"
        log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Processing {len(all_elements)} elements\n"
        
        # Clean elements
        cleaning_kwargs = {k: v for k, v in cleaning_options.items() if v}
        if cleaning_kwargs:
            cleaned_elements = clean_elements(all_elements, cleaning_kwargs)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Applied {len(cleaning_kwargs)} cleaning operations\n"
        else:
            cleaned_elements = all_elements
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] No cleaning operations selected\n"
        
        # Extract entities
        extraction_kwargs = {k: v for k, v in extraction_options.items() if v}
        if extraction_kwargs:
            processed_elements = extract_entities(cleaned_elements, extraction_kwargs)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Applied {len(extraction_kwargs)} extraction operations\n"
        else:
            processed_elements = cleaned_elements
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] No extraction operations selected\n"
        
        # Categorize elements
        element_stats = categorize_elements(processed_elements)
        log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Categorized {element_stats['total']} elements into {len(element_stats['by_type'])} types\n"
        
        # Create element distribution chart
        element_chart = visualize_element_distribution(element_stats)
        
        # Chunk elements
        status_html = "<div style='color: blue;'>Chunking elements...</div>"
        chunking_kwargs = {k: v for k, v in chunking_options.items() if v}
        chunks = chunk_elements(processed_elements, chunking_method, **chunking_kwargs)
        log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Created {len(chunks)} chunks using {chunking_method} method\n"
        
        # Extract keywords
        status_html = "<div style='color: blue;'>Extracting keywords...</div>"
        keywords_data = extract_top_keywords(chunks)
        keyword_viz = visualize_keywords(keywords_data)
        log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Extracted keywords from {len(keywords_data)} chunks\n"
        
        # Generate embeddings
        if embedding_model:
            status_html = f"<div style='color: blue;'>Generating embeddings using {embedding_model}...</div>"
            embedding_data = generate_embeddings(chunks, embedding_model)
            
            # Create embedding visualizations
            embedding_viz = visualize_embeddings_tsne(embedding_data)
            similarity_matrix = generate_similarity_matrix(embedding_data)
            
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Generated {embedding_data['dimension']}-dimensional embeddings\n"
        else:
            embedding_data = None
            embedding_viz = None
            similarity_matrix = None
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Skipped embedding generation (no model selected)\n"
        
        # Generate final output
        status_html = "<div style='color: blue;'>Generating final output...</div>"
        
        processing_stats = {
            'num_files': len(file_paths),
            'file_types': [identify_file_type(fp) for fp in file_paths],
            'total_elements': element_stats['total'],
            'element_types': element_stats['by_type'],
            'num_chunks': len(chunks)
        }
        
        if output_format == 'json':
            output_data = generate_final_output(chunks, embedding_data, processing_stats)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Generated JSON output with {len(output_data['chunks'])} chunks\n"
        
        elif output_format == 'qa':
            output_data = format_for_qa(chunks)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Generated Q&A format with {len(output_data)} documents\n"
        
        elif output_format == 'transformers':
            output_data = format_for_transformers(chunks)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Generated Transformer format\n"
        
        elif output_format == 'label_studio':
            output_data = format_for_label_studio(processed_elements)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Generated Label Studio format\n"
        
        else:
            # Default to JSON
            output_data = generate_final_output(chunks, embedding_data, processing_stats)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Generated default JSON output\n"
        
        status_html = "<div style='color: green;'>Processing complete! βœ…</div>"
        log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Successfully completed document processing pipeline\n"
        
    except Exception as e:
        status_html = f"<div style='color: red;'>Error in processing: {str(e)}</div>"
        log_html += f"[{datetime.now().strftime('%H:%M:%S')}] ERROR: {str(e)}\n"
        
        element_stats = None
        element_chart = None
        embedding_viz = None
        similarity_matrix = None
        keyword_viz = None
        output_data = None
    
    finally:
        # Clean up temp directory
        try:
            shutil.rmtree(temp_dir)
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Cleaned up temporary files\n"
        except Exception as e:
            log_html += f"[{datetime.now().strftime('%H:%M:%S')}] Warning: Failed to clean temporary files: {str(e)}\n"
    
    log_html += "</div>"
    return status_html, log_html, element_stats, element_chart, similarity_matrix, embedding_viz, keyword_viz, output_data

# Cell 8: Define the Gradio interface
def build_gradio_interface():
    """
    Build and launch the Gradio interface
    """
    # Define theme
    custom_theme = gr.themes.Default(
        primary_hue="indigo",
        secondary_hue="purple",
    )
    
    # Create interface
    with gr.Blocks(theme=custom_theme, title="Unstructured Document Processing") as app:
        gr.Markdown("""
        # πŸ“„ Unstructured Document Processing Pipeline
        
        This application demonstrates a comprehensive document processing pipeline using the [Unstructured](https://unstructured.io/) library.
        Upload one or more documents to process them through partitioning, cleaning, extraction, chunking, and embedding.
        
        **Supported file formats**: PDF, DOCX, PPTX, XLSX, HTML, CSV, JSON, XML, Email, Images (JPG, PNG)
        """)
        
        # File upload section
        with gr.Row():
            with gr.Column(scale=3):
                files = gr.File(
                    file_count="multiple",
                    label="Upload Documents",
                    type="binary",
                    file_types=[
                        ".pdf", ".docx", ".pptx", ".xlsx", ".html", ".htm",
                        ".csv", ".json", ".xml", ".eml", ".msg", 
                        ".jpg", ".jpeg", ".png", ".txt"
                    ]
                )
            
            with gr.Column(scale=2):
                with gr.Accordion("Status", open=True):
                    status = gr.HTML(value="<div style='color: gray;'>Waiting for files...</div>")
                with gr.Accordion("Processing Log", open=True):
                    log = gr.HTML(value="<div style='font-family: monospace; height: 200px; overflow-y: auto;'>Processing log will appear here...</div>")
        
        # Processing options
        with gr.Tabs():
            # Partitioning options
            with gr.TabItem("Partitioning"):
                gr.Markdown("### Document Partitioning Options")
                
                with gr.Row():
                    with gr.Column():
                        partition_options = {
                            "extract_images": gr.Checkbox(value=True, label="Extract Images", info="Extract images from documents"),
                            "infer_table_structure": gr.Checkbox(value=True, label="Infer Table Structure", info="Extract tables with structure"),
                            "include_page_breaks": gr.Checkbox(value=True, label="Include Page Breaks", info="Include page break elements"),
                            "include_metadata": gr.Checkbox(value=True, label="Include Metadata", info="Extract document metadata"),
                            "strategy": gr.Radio(choices=["fast", "hi_res", "ocr_only"], value="hi_res", label="OCR Strategy (for images/scanned docs)", info="Fast is quicker but less accurate")
                        }
            
            # Cleaning options
            with gr.TabItem("Cleaning"):
                gr.Markdown("### Text Cleaning Options")
                
                with gr.Row():
                    with gr.Column():
                        cleaning_options = {
                            "extra_whitespace": gr.Checkbox(value=True, label="Clean Extra Whitespace", info="Remove redundant whitespace"),
                            "unicode_quotes": gr.Checkbox(value=True, label="Replace Unicode Quotes", info="Normalize quotes to ASCII"),
                            "bullets": gr.Checkbox(value=True, label="Clean Bullets", info="Standardize bullet points"),
                            "dashes": gr.Checkbox(value=True, label="Clean Dashes", info="Standardize dashes"),
                            "group_paragraphs": gr.Checkbox(value=False, label="Group Broken Paragraphs", info="Combine paragraphs split across pages"),
                        }
                    
                    with gr.Column():
                        cleaning_options.update({
                            "remove_punctuation": gr.Checkbox(value=False, label="Remove Punctuation", info="Remove all punctuation")
                        })
            
            # Extraction options
            with gr.TabItem("Extraction"):
                gr.Markdown("### Entity Extraction Options")
                
                with gr.Row():
                    with gr.Column():
                        extraction_options = {
                            "emails": gr.Checkbox(value=True, label="Extract Emails", info="Extract email addresses"),
                            "urls": gr.Checkbox(value=True, label="Extract URLs", info="Extract URLs"),
                            "phone_numbers": gr.Checkbox(value=True, label="Extract Phone Numbers", info="Extract phone numbers"),
                            "ip_addresses": gr.Checkbox(value=False, label="Extract IP Addresses", info="Extract IP addresses"),
                            "ner": gr.Checkbox(value=True, label="Named Entity Recognition", info="Extract named entities (people, orgs, locations)")
                        }
            
            # Chunking options
            with gr.TabItem("Chunking"):
                gr.Markdown("### Text Chunking Options")
                
                with gr.Row():
                    with gr.Column():
                        chunking_method = gr.Radio(
                            choices=["by_title", "by_token"],
                            value="by_title",
                            label="Chunking Method",
                            info="How to divide the document into chunks"
                        )
                    
                    with gr.Column():
                        chunking_options = {
                            "max_characters": gr.Number(value=2000, label="Max Characters (by_token)", info="Maximum characters per chunk"),
                            "combine_text_under_n_chars": gr.Number(value=300, label="Combine Small Text (by_title)", info="Combine sections smaller than this")
                        }
            
            # Embedding options
            with gr.TabItem("Embedding"):
                gr.Markdown("### Embedding Generation Options")
                
                with gr.Row():
                    embedding_model = gr.Dropdown(
                        choices=[
                            "all-MiniLM-L6-v2",
                            "paraphrase-multilingual-MiniLM-L12-v2",
                            "all-mpnet-base-v2",
                            "sentence-t5-base",
                            ""  # Empty option to skip embedding
                        ],
                        value="all-MiniLM-L6-v2",
                        label="Embedding Model",
                        info="Select a model for generating embeddings (or empty to skip)"
                    )
            
            # Output format options
            with gr.TabItem("Output Format"):
                gr.Markdown("### Output Format Options")
                
                with gr.Row():
                    output_format = gr.Radio(
                        choices=["json", "qa", "transformers", "label_studio"],
                        value="json",
                        label="Output Format",
                        info="Format for the final processed output"
                    )
        
        # Process button
        process_btn = gr.Button("Process Documents", variant="primary")
        
        # Results section
        with gr.Tabs():
            with gr.TabItem("Element Analysis"):
                with gr.Row():
                    element_stats_json = gr.JSON(label="Element Statistics")
                    element_dist_chart = gr.Plot(label="Element Distribution")
            
            with gr.TabItem("Semantic Analysis"):
                with gr.Row():
                    keyword_viz_plot = gr.Plot(label="Keyword Analysis")
                
                with gr.Row():
                    embedding_viz_plot = gr.Plot(label="Embedding Visualization")
                    similarity_matrix_plot = gr.Plot(label="Semantic Similarity Matrix")
            
            with gr.TabItem("Processed Output"):
                output_data_json = gr.JSON(label="Processed Data")
        
        # Set up event handlers
        process_btn.click(
            fn=process_files,
            inputs=[
                files,
                gr.Group(list(partition_options.values())), 
                gr.Group(list(cleaning_options.values())),
                gr.Group(list(extraction_options.values())),
                chunking_method,
                gr.Group(list(chunking_options.values())),
                embedding_model,
                output_format
            ],
            outputs=[
                status,
                log,
                element_stats_json,
                element_dist_chart,
                similarity_matrix_plot,
                embedding_viz_plot,
                keyword_viz_plot,
                output_data_json
            ]
        )
        
        # Examples
        gr.Examples(
            examples=[
                [
                    # Example with default settings - user would upload their own files
                    None
                ]
            ],
            inputs=[files],
        )
        
        # Add markdown with instructions
        with gr.Accordion("Instructions", open=False):
            gr.Markdown("""
            ## How to Use This App
            
            1. **Upload Documents**: Start by uploading one or more documents in the supported formats.
            
            2. **Configure Processing Options**:
               - **Partitioning**: Control how documents are broken into elements
               - **Cleaning**: Select text cleaning operations to apply
               - **Extraction**: Choose entities to extract from the text
               - **Chunking**: Set how elements are grouped into chunks
               - **Embedding**: Select a model for generating vector embeddings
               - **Output Format**: Choose the format of the final processed data
            
            3. **Process Documents**: Click the "Process Documents" button to start the pipeline
            
            4. **Analyze Results**:
               - **Element Analysis**: View statistics and distribution of document elements
               - **Semantic Analysis**: Explore keyword distribution and semantic relationships
               - **Processed Output**: View the final structured data ready for use with LLMs
            
            ## Typical Use Cases
            
            - **Content Extraction**: Extract structured content from unstructured documents
            - **Document Understanding**: Analyze and categorize document components
            - **Text Preprocessing**: Prepare text for further NLP or machine learning
            - **Knowledge Base Creation**: Convert documents into semantic chunks for retrieval
            - **LLM Integration**: Structure documents for use with large language models
            """)
    
    return app

# Cell 9: Launch the application
# Create and launch the app
app = build_gradio_interface()
app.launch(debug=True)