MekkCyber commited on
Commit
db371b0
·
1 Parent(s): ae3cfae
Files changed (1) hide show
  1. app.py +7 -4
app.py CHANGED
@@ -35,8 +35,10 @@ def run_inference(model_name, input_text, num_tokens=6):
35
  try:
36
  # Call the `run_inference.py` script with the model and input
37
  start_time = time.time()
 
 
38
  result = subprocess.run(
39
- f"python run_inference.py -m models/Llama3-8B-1.58-100B-tokens/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0",
40
  shell=True,
41
  cwd=BITNET_REPO_PATH,
42
  capture_output=True,
@@ -59,7 +61,8 @@ def run_transformers(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken
59
  # Load the model and tokenizer dynamically if needed (commented out for performance)
60
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=oauth_token.token)
61
  model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=oauth_token.token)
62
-
 
63
  # Encode the input text
64
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
65
 
@@ -115,8 +118,8 @@ def interface():
115
  with gr.Row():
116
  transformer_model_dropdown = gr.Dropdown(
117
  label="Select Transformers Model",
118
- choices=["meta-llama/Llama-3.1-8B", "meta-llama/Llama-3.2-3B", "meta-llama/Llama-3.2-1B"], # Replace with actual models
119
- value="meta-llama/Llama-3.1-8B",
120
  interactive=True
121
  )
122
  compare_button = gr.Button("Run Transformers Inference", elem_id="compare-button")
 
35
  try:
36
  # Call the `run_inference.py` script with the model and input
37
  start_time = time.time()
38
+ if input_text is None :
39
+ return "Please provide an input text for the model"
40
  result = subprocess.run(
41
+ f"python run_inference.py -m models/{model_name}/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0",
42
  shell=True,
43
  cwd=BITNET_REPO_PATH,
44
  capture_output=True,
 
61
  # Load the model and tokenizer dynamically if needed (commented out for performance)
62
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=oauth_token.token)
63
  model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=oauth_token.token)
64
+ if input_text is None :
65
+ return "Please provide an input text for the model", None
66
  # Encode the input text
67
  input_ids = tokenizer.encode(input_text, return_tensors="pt")
68
 
 
118
  with gr.Row():
119
  transformer_model_dropdown = gr.Dropdown(
120
  label="Select Transformers Model",
121
+ choices=["TinyLlama/TinyLlama-1.1B-Chat-v1.0"], # Replace with actual models
122
+ value="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
123
  interactive=True
124
  )
125
  compare_button = gr.Button("Run Transformers Inference", elem_id="compare-button")