BitNet.cpp / app.py
MekkCyber
update
637d627
raw
history blame
6.48 kB
import gradio as gr
import subprocess
import os
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
from starlette.middleware.sessions import SessionMiddleware
from fastapi import FastAPI
import uvicorn
app = FastAPI()
app.add_middleware(SessionMiddleware, secret_key="secure_key")
# Configure logging
logging.basicConfig(level=logging.INFO)
# Path to the cloned repository
BITNET_REPO_PATH = "/home/user/app/BitNet"
SETUP_SCRIPT = os.path.join(BITNET_REPO_PATH, "setup_env.py")
INFERENCE_SCRIPT = os.path.join(BITNET_REPO_PATH, "run_inference.py")
# Function to set up the environment by running setup.py
def setup_bitnet(model_name):
try:
result = subprocess.run(
f"python {SETUP_SCRIPT} --hf-repo {model_name} -q i2_s",
shell=True,
cwd=BITNET_REPO_PATH,
capture_output=True,
text=True
)
if result.returncode == 0:
return "Setup completed successfully!"
else:
return f"Error in setup: {result.stderr}"
except Exception as e:
return str(e)
# Function to run inference using the `run_inference.py` file
def run_inference(model_name, input_text, num_tokens=6):
try:
# Call the `run_inference.py` script with the model and input
start_time = time.time()
if input_text is None :
return "Please provide an input text for the model"
result = subprocess.run(
f"python run_inference.py -m models/{model_name}/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0",
shell=True,
cwd=BITNET_REPO_PATH,
capture_output=True,
text=True
)
end_time = time.time()
if result.returncode == 0:
inference_time = round(end_time - start_time, 2)
return result.stdout, f"Inference took {inference_time} seconds."
else:
return f"Error during inference: {result.stderr}", None
except Exception as e:
return str(e), None
def run_transformers(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None, model_name, input_text, num_tokens):
# if oauth_token is None :
# return "Error : To Compare please login to your HF account and make sure you have access to the used Llama models"
# Load the model and tokenizer dynamically if needed (commented out for performance)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=oauth_token.token)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=oauth_token.token)
if input_text is None :
return "Please provide an input text for the model", None
# Encode the input text
input_ids = tokenizer.encode(input_text, return_tensors="pt")
# Start time for inference
start_time = time.time()
# Generate output with the specified number of tokens
output = model.generate(input_ids, max_length=len(input_ids[0]) + num_tokens, num_return_sequences=1)
# Calculate inference time
inference_time = time.time() - start_time
# Decode the generated output
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text, f"{inference_time:.2f} seconds"
# Gradio Interface
def interface():
with gr.Blocks(css=".gr-button {background-color: #5C6BC0; color: white;} .gr-button:hover {background-color: #3F51B5;}") as demo:
# gr.LoginButton(elem_id="login-button", elem_classes="center-button")
gr.Markdown(
"""
<h1 style="text-align: center; color: #4A148C;">BitNet.cpp Speed Demonstration</h1>
<p style="text-align: center; color: #6A1B9A;">Compare the speed and performance of BitNet with Transformers!</p>
""",
elem_id="header"
)
# Model selection and setup row
with gr.Row():
model_dropdown = gr.Dropdown(
label="Select Model",
choices=["HF1BitLLM/Llama3-8B-1.58-100B-tokens", "1bitLLM/bitnet_b1_58-3B", "1bitLLM/bitnet_b1_58-large"], # Replace with available models
value="HF1BitLLM/Llama3-8B-1.58-100B-tokens",
interactive=True,
elem_id="model-dropdown"
)
setup_button = gr.Button("Run Setup", elem_id="setup-button")
setup_status = gr.Textbox(label="Setup Status", interactive=False, placeholder="Setup status will appear here...")
# Inference row
with gr.Row():
num_tokens = gr.Slider(minimum=1, maximum=100, label="Number of Tokens to Generate", value=50, step=1)
input_text = gr.Textbox(label="Input Text", placeholder="Enter your input text here...")
infer_button = gr.Button("Run Inference", elem_id="infer-button")
result_output = gr.Textbox(label="Output", interactive=False, placeholder="Inference output will appear here...")
time_output = gr.Textbox(label="Inference Time", interactive=False, placeholder="Inference time will appear here...")
# Comparison with Transformers
with gr.Row():
transformer_model_dropdown = gr.Dropdown(
label="Select Transformers Model",
choices=["TinyLlama/TinyLlama-1.1B-Chat-v1.0"], # Replace with actual models
value="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
interactive=True
)
compare_button = gr.Button("Run Transformers Inference", elem_id="compare-button")
transformer_result_output = gr.Textbox(label="Transformers Output", interactive=False, placeholder="Transformers output will appear here...")
transformer_time_output = gr.Textbox(label="Transformers Inference Time", interactive=False, placeholder="Transformers inference time will appear here...")
# Actions
setup_button.click(setup_bitnet, inputs=model_dropdown, outputs=setup_status)
infer_button.click(run_inference, inputs=[model_dropdown, input_text, num_tokens], outputs=[result_output, time_output])
compare_button.click(run_transformers, inputs=[transformer_model_dropdown, input_text, num_tokens], outputs=[transformer_result_output, transformer_time_output])
# Launch the Gradio app
return demo
demo = interface()
app.mount("/", demo)
# Launch the app
# demo.launch()
uvicorn.run(app, host="0.0.0.0", port=7860)