Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
import os | |
import time | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import logging | |
from starlette.middleware.sessions import SessionMiddleware | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
# Path to the cloned repository | |
BITNET_REPO_PATH = "/home/user/app/BitNet" | |
SETUP_SCRIPT = os.path.join(BITNET_REPO_PATH, "setup_env.py") | |
INFERENCE_SCRIPT = os.path.join(BITNET_REPO_PATH, "run_inference.py") | |
# Function to set up the environment by running setup.py | |
def setup_bitnet(model_name): | |
try: | |
result = subprocess.run( | |
f"python {SETUP_SCRIPT} --hf-repo {model_name} -q i2_s", | |
shell=True, | |
cwd=BITNET_REPO_PATH, | |
capture_output=True, | |
text=True | |
) | |
if result.returncode == 0: | |
return "Setup completed successfully!" | |
else: | |
return f"Error in setup: {result.stderr}" | |
except Exception as e: | |
return str(e) | |
# Function to run inference using the `run_inference.py` file | |
def run_inference(model_name, input_text, num_tokens=6): | |
try: | |
# Call the `run_inference.py` script with the model and input | |
model_name = model_name.split("/")[1] | |
start_time = time.time() | |
if input_text is None or input_text == "": | |
return "Please provide an input text for the model" | |
result = subprocess.run( | |
f"python run_inference.py -m models/{model_name}/ggml-model-i2_s.gguf -p \"{input_text}\" -n {num_tokens} -temp 0", | |
shell=True, | |
cwd=BITNET_REPO_PATH, | |
capture_output=True, | |
text=True | |
) | |
end_time = time.time() | |
if result.returncode == 0: | |
inference_time = round(end_time - start_time, 2) | |
return result.stdout, f"Inference took {inference_time} seconds." | |
else: | |
return f"Error during inference: {result.stderr}", None | |
except Exception as e: | |
return str(e), None | |
def run_transformers(model_name, input_text, num_tokens): | |
# if oauth_token is None : | |
# return "Error : To Compare please login to your HF account and make sure you have access to the used Llama models" | |
# Load the model and tokenizer dynamically if needed (commented out for performance) | |
# if model_name=="TinyLlama/TinyLlama-1.1B-Chat-v1.0" : | |
print(input_text) | |
if input_text is None or input_text == "": | |
return "Please provide an input text for the model", None | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Encode the input text | |
input_ids = tokenizer.encode(input_text, return_tensors="pt") | |
# Start time for inference | |
start_time = time.time() | |
# Generate output with the specified number of tokens | |
output = model.generate(input_ids, max_length=len(input_ids[0]) + num_tokens, num_return_sequences=1) | |
# Calculate inference time | |
inference_time = time.time() - start_time | |
# Decode the generated output | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text, f"{inference_time:.2f} seconds" | |
# Gradio Interface | |
def interface(): | |
with gr.Blocks(css=""" | |
.gr-button {background-color: #5C6BC0; color: white; border-radius: 8px; padding: 8px 12px;} | |
.gr-button:hover {background-color: #3F51B5;} | |
#header {font-family: 'Arial', sans-serif;} | |
.container {background-color: #F3E5F5; border-radius: 10px; padding: 20px; margin: 10px 0;} | |
.container h2 {color: #6A1B9A; text-align: center;} | |
.center {text-align: center;} | |
.center-button {display: flex; justify-content: center; margin: 10px;} | |
""") as demo: | |
# Header | |
gr.Markdown( | |
""" | |
<h1 style="text-align: center; color: #4A148C;">BitNet.cpp Speed Demonstration 💻</h1> | |
<p style="text-align: center; color: #6A1B9A;">Compare the speed and performance of BitNet with popular Transformer models.</p> | |
""", | |
elem_id="header" | |
) | |
# Model Selection and Setup | |
with gr.Box(elem_id="container"): | |
with gr.Row(): | |
model_dropdown = gr.Dropdown( | |
label="Select Model", | |
choices=[ | |
"HF1BitLLM/Llama3-8B-1.58-100B-tokens", | |
"1bitLLM/bitnet_b1_58-3B", | |
"1bitLLM/bitnet_b1_58-large" | |
], | |
value="HF1BitLLM/Llama3-8B-1.58-100B-tokens", | |
interactive=True | |
) | |
setup_button = gr.Button("Run Setup") | |
setup_status = gr.Textbox(label="Setup Status", interactive=False, placeholder="Setup status will appear here...") | |
# Inference Section | |
with gr.Box(elem_id="container"): | |
gr.Markdown("<h2>BitNet Inference</h2>") | |
with gr.Row(): | |
num_tokens = gr.Slider( | |
minimum=1, maximum=100, | |
label="Number of Tokens to Generate", | |
value=50, step=1 | |
) | |
input_text = gr.Textbox( | |
label="Input Text", | |
placeholder="Enter your input text here..." | |
) | |
with gr.Row(): | |
infer_button = gr.Button("Run Inference") | |
result_output = gr.Textbox(label="Output", interactive=False, placeholder="Inference output will appear here...") | |
time_output = gr.Textbox(label="Inference Time", interactive=False, placeholder="Inference time will appear here...") | |
# Comparison with Transformers Section | |
with gr.Box(elem_id="container"): | |
gr.Markdown("<h2>Compare with Transformers</h2>") | |
with gr.Row(): | |
transformer_model_dropdown = gr.Dropdown( | |
label="Select Transformers Model", | |
choices=["TinyLlama/TinyLlama_v1.1", "HuggingFaceTB/SmolLM-360M"], | |
value="TinyLlama/TinyLlama_v1.1", | |
interactive=True | |
) | |
input_text_tr = gr.Textbox(label="Input Text", placeholder="Enter your input text here...") | |
with gr.Row(): | |
compare_button = gr.Button("Run Transformers Inference") | |
transformer_result_output = gr.Textbox(label="Transformers Output", interactive=False, placeholder="Transformers output will appear here...") | |
transformer_time_output = gr.Textbox(label="Transformers Inference Time", interactive=False, placeholder="Transformers inference time will appear here...") | |
# Actions | |
setup_button.click(setup_bitnet, inputs=model_dropdown, outputs=setup_status) | |
infer_button.click(run_inference, inputs=[model_dropdown, input_text, num_tokens], outputs=[result_output, time_output]) | |
compare_button.click(run_transformers, inputs=[transformer_model_dropdown, input_text_tr, num_tokens], outputs=[transformer_result_output, transformer_time_output]) | |
return demo | |
demo = interface() | |
# # Access FastAPI app instance from Gradio | |
# fastapi_app = demo.app | |
# # Add SessionMiddleware to enable session management | |
# fastapi_app.add_middleware(SessionMiddleware, secret_key="secret_key") # Use a secure, random secret key | |
# # Launch the app | |
demo.launch() | |
# from fastapi import FastAPI | |
# app = FastAPI() | |
# # Add SessionMiddleware for sessions handling | |
# app.add_middleware(SessionMiddleware, secret_key="secure_secret_key") | |
# # Mount Gradio app to FastAPI at the root | |
# app.mount("/", demo) |