Spaces:
Running
Running
File size: 7,822 Bytes
5d311f4 c0318d5 5d311f4 8c9d025 c0318d5 5d311f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import streamlit as st
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import OllamaEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.callbacks.manager import CallbackManager
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
# from langchain.chat_models import ChatOllama
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from functools import wraps
# -------
import time
from IPython.display import Image
from pprint import pprint
import torch
import rich
import random
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import PyPDFLoader
from haystack.dataclasses import Document
from haystack import Pipeline
from haystack.document_stores.in_memory import InMemoryDocumentStore
from haystack.components.preprocessors import DocumentCleaner, DocumentSplitter
from haystack.components.embedders import SentenceTransformersTextEmbedder, SentenceTransformersDocumentEmbedder
from haystack.components.writers import DocumentWriter
from haystack.document_stores.types import DuplicatePolicy
from haystack.utils import ComponentDevice
from haystack.components.generators import HuggingFaceLocalGenerator
from haystack.components.builders import PromptBuilder
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
# Decorator for measuring execution time
def timeit(func):
@wraps(func)
def timeit_wrapper(*args, **kwargs):
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
total_time = end_time - start_time
print(f"\nFunction {func.__name__} Took {total_time:.4f} seconds")
return result
return timeit_wrapper
@timeit
def load_chunk_data():
# oad data from websites
urls= ['https://csrc.nist.gov/projects/olir/informative-reference-catalog/details?referenceId=99#/',
'https://attack.mitre.org/',
'https://cloudsecurityalliance.org/',
'https://www.ftc.gov/business-guidance/small-businesses/cybersecurity/basics',
'https://www.pcisecuritystandards.org/',
'https://www.google.com/url?q=https://gdpr.eu/&sa=U&sqi=2&ved=2ahUKEwjJ8Ib2_6WFAxUxhYkEHQcPDYkQFnoECBoQAQ&usg=AOvVaw0wq2V0DbVTnZS1IzbdX0Os']
docs = []
for url in urls:
loader = WebBaseLoader(url)
data = loader.load()
# Split the loaded data
text_splitter = CharacterTextSplitter(separator='\n',
chunk_size=1000,
chunk_overlap=40)
doc = text_splitter.split_documents(data)
docs.extend(doc)
# load data from pdf
loader = PyPDFLoader("23NYCRR500_0.pdf")
pages = loader.load_and_split()
doc = text_splitter.split_documents(pages)
docs.extend(doc)
raw_docs=[]
for doc in docs:
doc = Document(content=doc.page_content, meta=doc.metadata)
raw_docs.append(doc)
return raw_docs
@timeit
def indexing_pipeline(raw_docs):
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine")
indexing = Pipeline()
indexing.add_component("cleaner", DocumentCleaner())
indexing.add_component("splitter", DocumentSplitter(split_by='sentence', split_length=2))
indexing.add_component("doc_embedder", SentenceTransformersDocumentEmbedder(model="thenlper/gte-large",
device=ComponentDevice.from_str("cpu"),
meta_fields_to_embed=["title"]))
indexing.add_component("writer", DocumentWriter(document_store=document_store, policy=DuplicatePolicy.OVERWRITE))
indexing.connect("cleaner", "splitter")
indexing.connect("splitter", "doc_embedder")
indexing.connect("doc_embedder", "writer")
#raw_docs = load_chunk_data()
indexing.run({"cleaner":{"documents":raw_docs}})
return document_store
@timeit
def rag_pipeline(document_store):
generator = HuggingFaceLocalGenerator("HuggingFaceH4/zephyr-7b-beta",
generation_kwargs={"max_new_tokens": 1000})
generator.warm_up()
prompt_template = """<|system|>Using the information contained in the context, give a comprehensive answer to the question.
If the answer is contained in the context, also report the source URL.
If the answer cannot be deduced from the context, do not give an answer.</s>
<|user|>
Context:
{% for doc in documents %}
{{ doc.content }} URL:{{ doc.meta['url'] }}
{% endfor %};
Question: {{query}}
</s>
<|assistant|>
"""
prompt_builder = PromptBuilder(template=prompt_template)
rag = Pipeline()
rag.add_component("text_embedder", SentenceTransformersTextEmbedder(model="thenlper/gte-large",
device=ComponentDevice.from_str("cpu")))
rag.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store, top_k=5))
rag.add_component("prompt_builder", prompt_builder)
rag.add_component("llm", generator)
rag.connect("text_embedder", "retriever")
rag.connect("retriever.documents", "prompt_builder.documents")
rag.connect("prompt_builder.prompt", "llm.prompt")
return rag
@timeit
def get_generative_answer(query,rag):
results = rag.run({
"text_embedder": {"text": query},
"prompt_builder": {"query": query}
}
)
answer = results["llm"]["replies"][0]
return answer
# Function to handle user input and generate responses
@timeit
def handle_userinput(user_question, rag):
answer = get_generative_answer(user_question, rag)
st.write(bot_template.replace("{{MSG}}", answer), unsafe_allow_html=True)
# Function to create a conversation chain
# @timeit
# def get_conversation_chain(vectorstore):
# llm = ChatOllama(
# model="llama2:70b-chat",
# callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
# # num_gpu=2
# )
# # llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
# memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm, retriever=vectorstore.as_retriever(), memory=memory
# )
# return conversation_chain
# Function to handle user input and generate responses
# Main function
def main():
st.set_page_config(page_title="Chat with multiple WebSites", page_icon=":books:")
st.write(css, unsafe_allow_html=True)
# Initialize session state variables
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# Streamlit app layout
st.header("Chat with multiple WebSites :books:")
user_question = st.text_input("Ask a question about your websites:")
if user_question:
# Load and index data only once
if "document_store" not in st.session_state:
raw_docs = load_chunk_data()
document_store = indexing_pipeline(raw_docs)
st.session_state.document_store = document_store
st.session_state.rag = rag_pipeline(document_store)
print(user_question)
handle_userinput(user_question, st.session_state.rag)
if __name__ == "__main__":
main()
|