File size: 16,018 Bytes
41ae0ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import gradio as gr
import easyocr
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from transformers import pipeline
import logging
import os
import time

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Check for GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
using_gpu = device == "cuda"
logger.info(f"Using device: {device}")

class SmartGlassesSystem:
    """Main class for Police Smart Glasses AI system"""
    
    def __init__(self):
        self.initialize_models()
        self.supported_languages = {
            "Arabic": ["ar", "en"],
            "Hindi": ["hi", "en"],
            "Chinese": ["ch_sim", "en"],
            "Japanese": ["ja", "en"],
            "Korean": ["ko", "en"],
            "Russian": ["ru", "en"],
            "French": ["fr", "en"]
        }
        # Cache for OCR readers to avoid reloading
        self.ocr_readers = {}
        
    def initialize_models(self):
        """Initialize all AI models with proper error handling"""
        try:
            # Load OCR for most common languages eagerly
            logger.info("Loading initial OCR readers...")
            self.ocr_readers = {
                "Arabic": easyocr.Reader(['ar', 'en'], gpu=using_gpu, verbose=False),
                "Hindi": easyocr.Reader(['hi', 'en'], gpu=using_gpu, verbose=False)
            }
            
            # Load translation model
            logger.info("Loading translation model...")
            self.translator = pipeline(
                "translation", 
                model="Helsinki-NLP/opus-mt-mul-en", 
                device=0 if using_gpu else -1
            )
            
            # Check if timm is installed for object detection
            try:
                import timm
                logger.info("Loading object detection model...")
                self.detector = pipeline(
                    "object-detection", 
                    model="facebook/detr-resnet-50", 
                    device=0 if using_gpu else -1
                )
            except ImportError:
                logger.warning("timm library not found, using YOLOv5 as fallback for object detection")
                try:
                    import torch
                    # Use YOLOv5 as a fallback (it has fewer dependencies)
                    self.detector = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
                    # Make detector interface compatible with transformers pipeline
                    self._original_detect = self.detector
                    self.detector = self._yolo_detector_wrapper
                except Exception as e2:
                    logger.error(f"Fallback object detection also failed: {str(e2)}")
                    logger.warning("Object detection will be disabled")
                    self.detector = self._dummy_detector
            
            logger.info("All models loaded successfully!")
            
        except Exception as e:
            logger.error(f"Error initializing models: {str(e)}")
            raise RuntimeError(f"Failed to initialize AI models: {str(e)}")
            
    def _yolo_detector_wrapper(self, image):
        """Wrapper to make YOLOv5 output compatible with transformers pipeline format"""
        results = self._original_detect(image)
        detections = []
        
        # Convert YOLOv5 results to transformers pipeline format
        for i, (x1, y1, x2, y2, conf, cls) in enumerate(results.xyxy[0]):
            detections.append({
                'score': float(conf),
                'label': results.names[int(cls)],
                'box': {
                    'xmin': int(x1),
                    'ymin': int(y1),
                    'xmax': int(x2),
                    'ymax': int(y2)
                }
            })
        return detections
        
    def _dummy_detector(self, image):
        """Dummy detector when no object detection is available"""
        logger.warning("Object detection is disabled due to missing dependencies")
        return []
    
    def get_ocr_reader(self, language_choice):
        """Get or create appropriate OCR reader based on language choice"""
        if language_choice in self.ocr_readers:
            return self.ocr_readers[language_choice]
        
        # Create new reader if not already loaded
        if language_choice in self.supported_languages:
            logger.info(f"Loading new OCR reader for {language_choice}...")
            reader = easyocr.Reader(
                self.supported_languages[language_choice],
                gpu=using_gpu,
                verbose=False
            )
            # Cache for future use
            self.ocr_readers[language_choice] = reader
            return reader
        else:
            # Fallback to general reader
            logger.warning(f"Unsupported language: {language_choice}, using default")
            if "Other" not in self.ocr_readers:
                self.ocr_readers["Other"] = easyocr.Reader(['en', 'fr', 'ru'], gpu=using_gpu, verbose=False)
            return self.ocr_readers["Other"]
    
    def extract_text(self, image, language_choice):
        """Extract text from image using OCR"""
        start_time = time.time()
        reader = self.get_ocr_reader(language_choice)
        
        try:
            text_results = reader.readtext(image)
            extracted_texts = [res[1] for res in text_results]
            extracted_text = " ".join(extracted_texts)
            
            # Get bounding boxes for visualization
            text_boxes = [(res[0], res[1]) for res in text_results]
            
            logger.info(f"OCR completed in {time.time() - start_time:.2f} seconds")
            return extracted_text, text_boxes
        except Exception as e:
            logger.error(f"OCR error: {str(e)}")
            return "Error during text extraction.", []
    
    def translate_text(self, text):
        """Translate extracted text to English"""
        if not text or text == "No text detected." or text.strip() == "":
            return "No text to translate."
        
        try:
            # Handle long text by breaking it into chunks
            max_length = 450  # Safe maximum length to avoid hitting the 512 token limit
            
            if len(text) > max_length:
                logger.info(f"Breaking long text ({len(text)} chars) into chunks for translation")
                
                # Split by sentences to maintain context when possible
                import re
                sentences = re.split(r'(?<=[.!?])\s+', text)
                chunks = []
                current_chunk = ""
                
                for sentence in sentences:
                    if len(current_chunk) + len(sentence) < max_length:
                        current_chunk += " " + sentence if current_chunk else sentence
                    else:
                        if current_chunk:
                            chunks.append(current_chunk)
                        current_chunk = sentence
                
                if current_chunk:
                    chunks.append(current_chunk)
                
                # Translate each chunk
                translations = []
                for chunk in chunks:
                    try:
                        chunk_translation = self.translator(chunk, max_length=512)[0]['translation_text']
                        translations.append(chunk_translation)
                    except Exception as e:
                        logger.error(f"Chunk translation error: {str(e)}")
                        translations.append(f"[Translation error: {str(e)}]")
                
                return " ".join(translations)
            else:
                # For shorter text, translate directly
                return self.translator(text, max_length=512)[0]['translation_text']
        except Exception as e:
            logger.error(f"Translation error: {str(e)}")
            return f"Translation error: {str(e)}"
    
    def detect_objects(self, image_pil):
        """Detect objects in the image"""
        try:
            # Use a try-except block to handle potential CUDA errors
            try:
                detections = self.detector(image_pil)
                return detections
            except RuntimeError as e:
                if "CUDA" in str(e):
                    logger.warning("CUDA error in object detection, trying CPU fallback")
                    # Try CPU fallback
                    old_device = None
                    if hasattr(self.detector, 'device'):
                        old_device = self.detector.device
                        self.detector.device = torch.device('cpu')
                    
                    try:
                        detections = self.detector(image_pil)
                        logger.info("CPU fallback for object detection successful")
                        
                        # Restore original device
                        if old_device:
                            self.detector.device = old_device
                            
                        return detections
                    except Exception as cpu_error:
                        logger.error(f"CPU fallback also failed: {str(cpu_error)}")
                        return []
                else:
                    raise e
                    
        except Exception as e:
            logger.error(f"Object detection error: {str(e)}")
            return []
    
    def visualize_results(self, image, text_boxes, detections):
        """Create visualization with detected objects and text"""
        image_draw = image.copy().convert("RGB")
        draw = ImageDraw.Draw(image_draw)
        
        # Try to load a better font, fall back to default if necessary
        try:
            font = ImageFont.truetype("Arial", 12)
        except IOError:
            font = ImageFont.load_default()
        
        # Draw text bounding boxes
        for box, text in text_boxes:
            # Convert box points to rectangle coordinates
            points = np.array(box).astype(np.int32)
            draw.polygon([tuple(p) for p in points], outline="blue", width=2)
            # Add small text label
            draw.text((points[0][0], points[0][1] - 10), "Text", fill="blue", font=font)
        
        # Draw object detection boxes
        for det in detections:
            box = det['box']
            label = det['label']
            score = det['score']
            
            if score > 0.6:  # Higher confidence threshold
                draw.rectangle(
                    [box['xmin'], box['ymin'], box['xmax'], box['ymax']],
                    outline="red",
                    width=3
                )
                label_text = f"{label} ({score:.2f})"
                draw.text((box['xmin'], box['ymin'] - 15), label_text, fill="red", font=font)
        
        return image_draw
    
    def process_image(self, image, language_choice):
        """Main processing pipeline"""
        if image is None:
            return (
                None, 
                "No image provided. Please upload an image.", 
                "No image to process."
            )
            
        # Convert to numpy array if needed
        if not isinstance(image, np.ndarray):
            image = np.array(image)
        
        # Create PIL image for visualization
        image_pil = Image.fromarray(image)
        
        # Extract text
        try:
            extracted_text, text_boxes = self.extract_text(image, language_choice)
        except Exception as e:
            logger.error(f"Text extraction error: {str(e)}")
            extracted_text = f"Error during text extraction: {str(e)}"
            text_boxes = []
        
        # Translate text
        try:
            translation = self.translate_text(extracted_text)
        except Exception as e:
            logger.error(f"Translation error: {str(e)}")
            translation = f"Error during translation: {str(e)}"
        
        # Detect objects - with error recovery
        try:
            detections = self.detect_objects(image_pil)
        except Exception as e:
            logger.error(f"Final object detection error: {str(e)}")
            detections = []
        
        # Create visualization
        try:
            result_image = self.visualize_results(image_pil, text_boxes, detections)
        except Exception as e:
            logger.error(f"Visualization error: {str(e)}")
            result_image = image_pil  # Return original image if visualization fails
        
        return result_image, extracted_text, translation

# Create system instance
smart_glasses = SmartGlassesSystem()

def create_interface():
    """Create and configure the Gradio interface"""
    
    # Custom CSS for better appearance
    custom_css = """
    .gradio-container {
        background-color: #f0f4f8;
    }
    .output-image {
        border: 2px solid #2c3e50;
        border-radius: 5px;
    }
    """
    
    # Create interface
    with gr.Blocks(css=custom_css, title="🚨 Police Smart Glasses - AI Demo") as iface:
        gr.Markdown("""
        # 🚨 Police Smart Glasses - Advanced AI Demo
        
        This system demonstrates real-time text recognition, translation, and object detection capabilities 
        for law enforcement smart glasses technology.
        
        ### Instructions:
        1. Upload an image containing text in the selected language
        2. Choose the primary language in the image
        3. View the detection results, extracted text, and English translation
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # Input components
                input_image = gr.Image(
                    type="pil", 
                    label="Upload an Image (e.g., Signs, Documents, License Plates)"
                )
                
                language_choice = gr.Dropdown(
                    choices=list(smart_glasses.supported_languages.keys()) + ["Other"],
                    value="Arabic",
                    label="Select Primary Language in Image"
                )
                
                process_btn = gr.Button("Process Image", variant="primary")
                
            with gr.Column(scale=1):
                # Output components
                output_image = gr.Image(label="Analysis Results")
                extracted_text = gr.Textbox(label="Extracted Text")
                translated_text = gr.Textbox(label="Translated Text (English)")
        
        # Set up processing function
        process_btn.click(
            fn=smart_glasses.process_image,
            inputs=[input_image, language_choice],
            outputs=[output_image, extracted_text, translated_text]
        )
        
        # Examples for testing
        gr.Examples(
            examples=[
                ["examples/arabic_sign.jpg", "Arabic"],
                ["examples/hindi_text.jpg", "Hindi"],
                ["examples/russian_document.jpg", "Russian"]
            ],
            inputs=[input_image, language_choice]
        )
        
        # System information
        with gr.Accordion("System Information", open=False):
            gr.Markdown(f"""
            - **Device**: {'GPU' if using_gpu else 'CPU'} 
            - **Supported Languages**: {', '.join(smart_glasses.supported_languages.keys())}
            - **AI Models**: 
                - OCR: EasyOCR
                - Translation: Helsinki-NLP/opus-mt-mul-en
                - Object Detection: facebook/detr-resnet-50
            """)
    
    return iface

if __name__ == "__main__":
    # Create and launch interface
    iface = create_interface()
    iface.launch(
        share=True,  # Enable sharing
        debug=True   # Show debugging information
    )