Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import sys
|
4 |
+
import pkg_resources
|
5 |
+
import time
|
6 |
+
import tempfile
|
7 |
+
import numpy as np
|
8 |
+
import warnings
|
9 |
+
from pathlib import Path
|
10 |
+
warnings.filterwarnings("ignore")
|
11 |
+
|
12 |
+
def install_package(package, version=None):
|
13 |
+
package_spec = f"{package}=={version}" if version else package
|
14 |
+
print(f"Installing {package_spec}...")
|
15 |
+
try:
|
16 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", "--no-cache-dir", package_spec])
|
17 |
+
except subprocess.CalledProcessError as e:
|
18 |
+
print(f"Failed to install {package_spec}: {e}")
|
19 |
+
raise
|
20 |
+
|
21 |
+
# Required packages (add version pins if needed)
|
22 |
+
required_packages = {
|
23 |
+
"gradio": None,
|
24 |
+
"torch": None,
|
25 |
+
"torchaudio": None,
|
26 |
+
"transformers": None,
|
27 |
+
"librosa": None,
|
28 |
+
"scipy": None,
|
29 |
+
"matplotlib": None,
|
30 |
+
"pydub": None,
|
31 |
+
"plotly": None
|
32 |
+
}
|
33 |
+
|
34 |
+
installed_packages = {pkg.key for pkg in pkg_resources.working_set}
|
35 |
+
for package, version in required_packages.items():
|
36 |
+
if package not in installed_packages:
|
37 |
+
install_package(package, version)
|
38 |
+
|
39 |
+
# Now import necessary packages
|
40 |
+
import gradio as gr
|
41 |
+
import torch
|
42 |
+
import torchaudio
|
43 |
+
import librosa
|
44 |
+
import matplotlib
|
45 |
+
matplotlib.use('Agg') # non-interactive backend for any fallback
|
46 |
+
from pydub import AudioSegment
|
47 |
+
import scipy
|
48 |
+
import io
|
49 |
+
from transformers import pipeline, AutoFeatureExtractor, AutoModelForAudioClassification
|
50 |
+
import plotly.graph_objects as go
|
51 |
+
|
52 |
+
# Define emotion labels, tone mapping, and descriptions
|
53 |
+
EMOTION_DESCRIPTIONS = {
|
54 |
+
"angry": "Voice shows irritation, hostility, or aggression. Tone may be harsh, loud, or intense.",
|
55 |
+
"disgust": "Voice expresses revulsion or strong disapproval. Tone may sound repulsed or contemptuous.",
|
56 |
+
"fear": "Voice reveals anxiety, worry, or dread. Tone may be shaky, hesitant, or tense.",
|
57 |
+
"happy": "Voice conveys joy, pleasure, or positive emotions. Tone is often bright, energetic, and uplifted.",
|
58 |
+
"neutral": "Voice lacks strong emotional signals. Tone is even, moderate, and relatively flat.",
|
59 |
+
"sad": "Voice expresses sorrow, unhappiness, or melancholy. Tone may be quiet, heavy, or subdued.",
|
60 |
+
"surprise": "Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic."
|
61 |
+
}
|
62 |
+
|
63 |
+
# If you wish to group emotions by tone, you can do so here:
|
64 |
+
TONE_MAPPING = {
|
65 |
+
"positive": ["happy", "surprise"],
|
66 |
+
"neutral": ["neutral"],
|
67 |
+
"negative": ["angry", "sad", "fear", "disgust"]
|
68 |
+
}
|
69 |
+
|
70 |
+
# Global variable for the emotion classifier
|
71 |
+
audio_emotion_classifier = None
|
72 |
+
|
73 |
+
def load_emotion_model():
|
74 |
+
"""Load and cache the speech emotion classification model."""
|
75 |
+
global audio_emotion_classifier
|
76 |
+
if audio_emotion_classifier is None:
|
77 |
+
try:
|
78 |
+
print("Loading emotion classification model...")
|
79 |
+
model_name = "superb/hubert-large-superb-er"
|
80 |
+
audio_emotion_classifier = pipeline("audio-classification", model=model_name)
|
81 |
+
print("Emotion classification model loaded successfully")
|
82 |
+
return True
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error loading emotion model: {e}")
|
85 |
+
return False
|
86 |
+
return True
|
87 |
+
|
88 |
+
def convert_audio_to_wav(audio_file):
|
89 |
+
"""Convert uploaded audio to WAV format."""
|
90 |
+
try:
|
91 |
+
audio = AudioSegment.from_file(audio_file)
|
92 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
|
93 |
+
wav_path = temp_wav.name
|
94 |
+
audio.export(wav_path, format="wav")
|
95 |
+
return wav_path
|
96 |
+
except Exception as e:
|
97 |
+
print(f"Error converting audio: {e}")
|
98 |
+
return None
|
99 |
+
|
100 |
+
def analyze_voice_tone(audio_file):
|
101 |
+
"""
|
102 |
+
Analyze the tone characteristics of the voice using more robust measurements.
|
103 |
+
Includes pitch variation, energy dynamics, and spectral features.
|
104 |
+
"""
|
105 |
+
try:
|
106 |
+
audio_data, sample_rate = librosa.load(audio_file, sr=16000)
|
107 |
+
|
108 |
+
# 1. Basic audio features
|
109 |
+
audio_duration = librosa.get_duration(y=audio_data, sr=sample_rate)
|
110 |
+
if audio_duration < 1.0: # Too short for reliable analysis
|
111 |
+
return "Audio too short for reliable tone analysis. Please provide at least 3 seconds."
|
112 |
+
|
113 |
+
# 2. Pitch analysis with more robust handling
|
114 |
+
f0, voiced_flag, voiced_prob = librosa.pyin(
|
115 |
+
audio_data,
|
116 |
+
fmin=librosa.note_to_hz('C2'),
|
117 |
+
fmax=librosa. note_to_hz('C7'),
|
118 |
+
sr=sample_rate
|
119 |
+
)
|
120 |
+
|
121 |
+
# Filter out NaN values and get valid pitch points
|
122 |
+
valid_f0 = f0[~np.isnan(f0)]
|
123 |
+
|
124 |
+
# If no pitch detected, may be noise or silence
|
125 |
+
if len(valid_f0) < 10:
|
126 |
+
return "**Voice Tone Analysis:** Unable to detect sufficient pitched content for analysis. The audio may contain primarily noise, silence, or non-speech sounds."
|
127 |
+
|
128 |
+
# 3. Calculate improved statistics
|
129 |
+
mean_pitch = np.mean(valid_f0)
|
130 |
+
median_pitch = np.median(valid_f0)
|
131 |
+
std_pitch = np.std(valid_f0)
|
132 |
+
pitch_range = np.percentile(valid_f0, 95) - np.percentile(valid_f0, 5)
|
133 |
+
|
134 |
+
# 4. Energy/volume dynamics
|
135 |
+
rms_energy = librosa.feature.rms(y=audio_data)[0]
|
136 |
+
mean_energy = np.mean(rms_energy)
|
137 |
+
std_energy = np.std(rms_energy)
|
138 |
+
energy_range = np.percentile(rms_energy, 95) - np.percentile(rms_energy, 5)
|
139 |
+
|
140 |
+
# 5. Speaking rate approximation (zero-crossing rate can help estimate this)
|
141 |
+
zcr = librosa.feature.zero_crossing_rate(audio_data)[0]
|
142 |
+
mean_zcr = np.mean(zcr)
|
143 |
+
|
144 |
+
# 6. Calculate pitch variability relative to the mean (coefficient of variation)
|
145 |
+
# This gives a better measure than raw std dev
|
146 |
+
pitch_cv = (std_pitch / mean_pitch) * 100 if mean_pitch > 0 else 0
|
147 |
+
|
148 |
+
# 7. Tone classification logic using multiple features
|
149 |
+
# Define tone characteristics based on combinations of features
|
150 |
+
tone_class = ""
|
151 |
+
tone_details = []
|
152 |
+
|
153 |
+
# Pitch-based characteristics
|
154 |
+
if pitch_cv < 5:
|
155 |
+
tone_class = "Monotone"
|
156 |
+
tone_details.append("Very little pitch variation - sounds flat and unexpressive")
|
157 |
+
elif pitch_cv < 12:
|
158 |
+
tone_class = "Steady"
|
159 |
+
tone_details.append("Moderate pitch variation - sounds controlled and measured")
|
160 |
+
elif pitch_cv < 20:
|
161 |
+
tone_class = "Expressive"
|
162 |
+
tone_details.append("Good pitch variation - sounds naturally engaging")
|
163 |
+
else:
|
164 |
+
tone_class = "Highly Dynamic"
|
165 |
+
tone_details.append("Strong pitch variation - sounds animated and emphatic")
|
166 |
+
|
167 |
+
# Pitch range classification
|
168 |
+
if mean_pitch > 180:
|
169 |
+
tone_details.append("Higher pitched voice - may convey excitement or tension")
|
170 |
+
elif mean_pitch < 120:
|
171 |
+
tone_details.append("Lower pitched voice - may convey calmness or authority")
|
172 |
+
else:
|
173 |
+
tone_details.append("Mid-range pitch - typically perceived as balanced")
|
174 |
+
|
175 |
+
# Energy/volume characteristics
|
176 |
+
energy_cv = (std_energy / mean_energy) * 100 if mean_energy > 0 else 0
|
177 |
+
if energy_cv < 10:
|
178 |
+
tone_details.append("Consistent volume - sounds controlled and measured")
|
179 |
+
elif energy_cv > 30:
|
180 |
+
tone_details.append("Variable volume - suggests emotional emphasis or expressiveness")
|
181 |
+
|
182 |
+
# Speech rate approximation
|
183 |
+
if mean_zcr > 0.1:
|
184 |
+
tone_details.append("Faster speech rate - may convey urgency or enthusiasm")
|
185 |
+
elif mean_zcr < 0.05:
|
186 |
+
tone_details.append("Slower speech rate - may convey thoughtfulness or hesitation")
|
187 |
+
|
188 |
+
# Generate tone summary and interpretation
|
189 |
+
tone_analysis = f"### Voice Tone Analysis\n\n"
|
190 |
+
tone_analysis += f"**Primary tone quality:** {tone_class}\n\n"
|
191 |
+
tone_analysis += "**Tone characteristics:**\n"
|
192 |
+
for detail in tone_details:
|
193 |
+
tone_analysis += f"- {detail}\n"
|
194 |
+
|
195 |
+
tone_analysis += "\n**Interpretation:**\n"
|
196 |
+
|
197 |
+
# Generate interpretation based on the classified tone
|
198 |
+
if tone_class == "Monotone":
|
199 |
+
tone_analysis += ("A monotone delivery can create distance and reduce engagement. "
|
200 |
+
"Consider adding more vocal variety to sound more engaging and authentic.")
|
201 |
+
elif tone_class == "Steady":
|
202 |
+
tone_analysis += ("Your steady tone suggests reliability and control. "
|
203 |
+
"This can be effective in professional settings or when conveying serious information.")
|
204 |
+
elif tone_class == "Expressive":
|
205 |
+
tone_analysis += ("Your expressive tone helps maintain listener interest and emphasize key points. "
|
206 |
+
"This naturally engaging quality helps convey authenticity and conviction.")
|
207 |
+
else: # Highly Dynamic
|
208 |
+
tone_analysis += ("Your highly dynamic vocal style conveys strong emotion and energy. "
|
209 |
+
"This can be powerful for storytelling and persuasion, though in some contexts "
|
210 |
+
"a more measured approach might be appropriate.")
|
211 |
+
|
212 |
+
return tone_analysis
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
print(f"Error in tone analysis: {e}")
|
216 |
+
return "Tone analysis unavailable due to an error processing the audio."
|
217 |
+
|
218 |
+
def analyze_audio_emotions(audio_file, progress=gr.Progress(), chunk_duration=2):
|
219 |
+
"""
|
220 |
+
Analyze speech emotions in short chunks,
|
221 |
+
building a timeline of confidence for each emotion.
|
222 |
+
Returns a Plotly figure, summary text, detailed results.
|
223 |
+
"""
|
224 |
+
if not load_emotion_model():
|
225 |
+
return None, "Failed to load emotion classifier.", None
|
226 |
+
|
227 |
+
# Use existing WAV if possible, else convert
|
228 |
+
if audio_file.endswith(".wav"):
|
229 |
+
audio_path = audio_file
|
230 |
+
else:
|
231 |
+
audio_path = convert_audio_to_wav(audio_file)
|
232 |
+
if not audio_path:
|
233 |
+
return None, "Could not process audio file", None
|
234 |
+
|
235 |
+
try:
|
236 |
+
# Load with librosa
|
237 |
+
audio_data, sample_rate = librosa.load(audio_path, sr=16000)
|
238 |
+
duration = len(audio_data) / sample_rate
|
239 |
+
|
240 |
+
# Use shorter chunks for more granular analysis
|
241 |
+
chunk_samples = int(chunk_duration * sample_rate)
|
242 |
+
num_chunks = max(1, int(np.ceil(len(audio_data) / chunk_samples)))
|
243 |
+
|
244 |
+
all_emotions = []
|
245 |
+
time_points = []
|
246 |
+
|
247 |
+
# For each chunk, run emotion classification
|
248 |
+
for i in range(num_chunks):
|
249 |
+
progress((i + 1) / num_chunks, "Analyzing audio emotions...")
|
250 |
+
start_idx = i * chunk_samples
|
251 |
+
end_idx = min(start_idx + chunk_samples, len(audio_data))
|
252 |
+
chunk = audio_data[start_idx:end_idx]
|
253 |
+
|
254 |
+
# Skip very short chunks
|
255 |
+
if len(chunk) < 0.5 * sample_rate:
|
256 |
+
continue
|
257 |
+
|
258 |
+
# Write chunk to temp WAV
|
259 |
+
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_chunk:
|
260 |
+
chunk_path = temp_chunk.name
|
261 |
+
scipy.io.wavfile.write(chunk_path, sample_rate, (chunk * 32767).astype(np.int16))
|
262 |
+
|
263 |
+
# Classify - extract top-n predictions for each chunk
|
264 |
+
raw_results = audio_emotion_classifier(chunk_path, top_k=7) # Get all 7 emotions
|
265 |
+
os.unlink(chunk_path)
|
266 |
+
|
267 |
+
all_emotions.append(raw_results)
|
268 |
+
time_points.append((start_idx / sample_rate, end_idx / sample_rate))
|
269 |
+
|
270 |
+
# Skip if no valid emotions detected
|
271 |
+
if not all_emotions:
|
272 |
+
return None, "No speech detected in the audio.", None
|
273 |
+
|
274 |
+
# Build Plotly chart with improved styling
|
275 |
+
fig = build_plotly_line_chart(all_emotions, time_points, duration)
|
276 |
+
|
277 |
+
# Build summary and detailed results
|
278 |
+
summary_text = generate_emotion_summary(all_emotions)
|
279 |
+
detailed_results = build_detailed_results(all_emotions, time_points)
|
280 |
+
|
281 |
+
return fig, summary_text, detailed_results
|
282 |
+
|
283 |
+
except Exception as e:
|
284 |
+
import traceback
|
285 |
+
traceback.print_exc()
|
286 |
+
return None, f"Error analyzing audio: {str(e)}", None
|
287 |
+
|
288 |
+
def smooth_data(data, window_size=3):
|
289 |
+
"""Apply a moving average smoothing to the data"""
|
290 |
+
smoothed = np.convolve(data, np.ones(window_size)/window_size, mode='valid')
|
291 |
+
|
292 |
+
# Add back points that were lost in the convolution
|
293 |
+
padding = len(data) - len(smoothed)
|
294 |
+
if padding > 0:
|
295 |
+
# Add padding at the beginning
|
296 |
+
padding_front = padding // 2
|
297 |
+
padding_back = padding - padding_front
|
298 |
+
|
299 |
+
# Use the first/last values for padding
|
300 |
+
front_padding = [smoothed[0]] * padding_front
|
301 |
+
back_padding = [smoothed[-1]] * padding_back
|
302 |
+
|
303 |
+
smoothed = np.concatenate([front_padding, smoothed, back_padding])
|
304 |
+
|
305 |
+
return smoothed
|
306 |
+
|
307 |
+
def build_plotly_line_chart(all_emotions, time_points, duration):
|
308 |
+
"""
|
309 |
+
Create an improved Plotly line chart with toggles for each emotion.
|
310 |
+
Shows all emotions for each time point rather than just the top one.
|
311 |
+
"""
|
312 |
+
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
|
313 |
+
|
314 |
+
# Custom color scheme for emotions
|
315 |
+
colors = {
|
316 |
+
"angry": "#E53935", # Red
|
317 |
+
"disgust": "#8E24AA", # Purple
|
318 |
+
"fear": "#7B1FA2", # Deep Purple
|
319 |
+
"happy": "#FFC107", # Amber/Yellow
|
320 |
+
"neutral": "#78909C", # Blue Grey
|
321 |
+
"sad": "#1E88E5", # Blue
|
322 |
+
"surprise": "#43A047" # Green
|
323 |
+
}
|
324 |
+
|
325 |
+
# Prepare data structure for all emotions
|
326 |
+
emotion_data = {label: [] for label in emotion_labels}
|
327 |
+
timeline_times = [(start + end) / 2 for start, end in time_points]
|
328 |
+
|
329 |
+
# Process emotion scores - ensure all emotions have values
|
330 |
+
for chunk_emotions in all_emotions:
|
331 |
+
# Create a mapping of label to score for this chunk
|
332 |
+
scores = {item["label"]: item["score"] for item in chunk_emotions}
|
333 |
+
|
334 |
+
# Ensure all emotion labels have a value (default to 0.0)
|
335 |
+
for label in emotion_labels:
|
336 |
+
emotion_data[label].append(scores.get(label, 0.0))
|
337 |
+
|
338 |
+
# Smooth the data
|
339 |
+
for label in emotion_labels:
|
340 |
+
if len(emotion_data[label]) > 2:
|
341 |
+
emotion_data[label] = smooth_data(emotion_data[label])
|
342 |
+
|
343 |
+
# Build the chart
|
344 |
+
fig = go.Figure()
|
345 |
+
|
346 |
+
# Add traces for each emotion
|
347 |
+
for label in emotion_labels:
|
348 |
+
fig.add_trace(
|
349 |
+
go.Scatter(
|
350 |
+
x=timeline_times,
|
351 |
+
y=emotion_data[label],
|
352 |
+
mode='lines',
|
353 |
+
name=label.capitalize(),
|
354 |
+
line=dict(
|
355 |
+
color=colors.get(label, None),
|
356 |
+
width=3,
|
357 |
+
shape='spline', # Curved lines
|
358 |
+
smoothing=1.3
|
359 |
+
),
|
360 |
+
hovertemplate=f'{label.capitalize()}: %{{y:.2f}}<extra></extra>',
|
361 |
+
)
|
362 |
+
)
|
363 |
+
|
364 |
+
# Add markers for dominant emotion at each point
|
365 |
+
dominant_markers_x = []
|
366 |
+
dominant_markers_y = []
|
367 |
+
dominant_markers_text = []
|
368 |
+
dominant_markers_color = []
|
369 |
+
|
370 |
+
for i, time in enumerate(timeline_times):
|
371 |
+
scores = {label: emotion_data[label][i] for label in emotion_labels}
|
372 |
+
dominant = max(scores.items(), key=lambda x: x[1])
|
373 |
+
|
374 |
+
dominant_markers_x.append(time)
|
375 |
+
dominant_markers_y.append(dominant[1])
|
376 |
+
dominant_markers_text.append(f"{dominant[0].capitalize()}: {dominant[1]:.2f}")
|
377 |
+
dominant_markers_color.append(colors.get(dominant[0], "#000000"))
|
378 |
+
|
379 |
+
fig.add_trace(
|
380 |
+
go.Scatter(
|
381 |
+
x=dominant_markers_x,
|
382 |
+
y=dominant_markers_y,
|
383 |
+
mode='markers',
|
384 |
+
marker=dict(
|
385 |
+
size=10,
|
386 |
+
color=dominant_markers_color,
|
387 |
+
line=dict(width=2, color='white')
|
388 |
+
),
|
389 |
+
name="Dominant Emotion",
|
390 |
+
text=dominant_markers_text,
|
391 |
+
hoverinfo="text",
|
392 |
+
hovertemplate='%{text}<extra></extra>'
|
393 |
+
)
|
394 |
+
)
|
395 |
+
|
396 |
+
# Add area chart for better visualization
|
397 |
+
for label in emotion_labels:
|
398 |
+
fig.add_trace(
|
399 |
+
go.Scatter(
|
400 |
+
x=timeline_times,
|
401 |
+
y=emotion_data[label],
|
402 |
+
mode='none',
|
403 |
+
name=f"{label.capitalize()} Area",
|
404 |
+
fill='tozeroy',
|
405 |
+
fillcolor=f"rgba{tuple(list(int(colors.get(label, '#000000').lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) + [0.1])}",
|
406 |
+
showlegend=False,
|
407 |
+
hoverinfo='skip'
|
408 |
+
)
|
409 |
+
)
|
410 |
+
|
411 |
+
# Improve layout
|
412 |
+
fig.update_layout(
|
413 |
+
title={
|
414 |
+
'text': "Voice Emotion Analysis Over Time",
|
415 |
+
'font': {'size': 22, 'family': 'Arial, sans-serif'}
|
416 |
+
},
|
417 |
+
xaxis_title="Time (seconds)",
|
418 |
+
yaxis_title="Confidence Score",
|
419 |
+
yaxis=dict(
|
420 |
+
range=[0, 1.0],
|
421 |
+
showgrid=True,
|
422 |
+
gridcolor='rgba(230, 230, 230, 0.8)'
|
423 |
+
),
|
424 |
+
xaxis=dict(
|
425 |
+
showgrid=True,
|
426 |
+
gridcolor='rgba(230, 230, 230, 0.8)'
|
427 |
+
),
|
428 |
+
plot_bgcolor='white',
|
429 |
+
legend=dict(
|
430 |
+
bordercolor='rgba(0,0,0,0.1)',
|
431 |
+
borderwidth=1,
|
432 |
+
orientation="h",
|
433 |
+
yanchor="bottom",
|
434 |
+
y=1.02,
|
435 |
+
xanchor="right",
|
436 |
+
x=1
|
437 |
+
),
|
438 |
+
hovermode='closest',
|
439 |
+
height=500, # Larger size for better viewing
|
440 |
+
margin=dict(l=10, r=10, t=80, b=50)
|
441 |
+
)
|
442 |
+
|
443 |
+
return fig
|
444 |
+
|
445 |
+
def generate_alternative_chart(all_emotions, time_points):
|
446 |
+
"""
|
447 |
+
Create a stacked area chart to better visualize emotion changes over time
|
448 |
+
"""
|
449 |
+
emotion_labels = list(EMOTION_DESCRIPTIONS.keys())
|
450 |
+
|
451 |
+
# Custom color scheme for emotions - more visible/distinct
|
452 |
+
colors = {
|
453 |
+
"angry": "#F44336", # Red
|
454 |
+
"disgust": "#9C27B0", # Purple
|
455 |
+
"fear": "#673AB7", # Deep Purple
|
456 |
+
"happy": "#FFC107", # Amber
|
457 |
+
"neutral": "#607D8B", # Blue Grey
|
458 |
+
"sad": "#2196F3", # Blue
|
459 |
+
"surprise": "#4CAF50" # Green
|
460 |
+
}
|
461 |
+
|
462 |
+
# Prepare timeline points
|
463 |
+
timeline_times = [(start + end) / 2 for start, end in time_points]
|
464 |
+
|
465 |
+
# Prepare data structure for all emotions
|
466 |
+
emotion_data = {label: [] for label in emotion_labels}
|
467 |
+
|
468 |
+
# Process emotion scores - ensure all emotions have values
|
469 |
+
for chunk_emotions in all_emotions:
|
470 |
+
# Create a mapping of label to score for this chunk
|
471 |
+
scores = {item["label"]: item["score"] for item in chunk_emotions}
|
472 |
+
|
473 |
+
# Ensure all emotion labels have a value (default to 0.0)
|
474 |
+
for label in emotion_labels:
|
475 |
+
emotion_data[label].append(scores.get(label, 0.0))
|
476 |
+
|
477 |
+
# Create the stacked area chart
|
478 |
+
fig = go.Figure()
|
479 |
+
|
480 |
+
# Add each emotion as a separate trace
|
481 |
+
for label in emotion_labels:
|
482 |
+
fig.add_trace(
|
483 |
+
go.Scatter(
|
484 |
+
x=timeline_times,
|
485 |
+
y=emotion_data[label],
|
486 |
+
mode='lines',
|
487 |
+
name=label.capitalize(),
|
488 |
+
line=dict(width=0.5, color=colors.get(label, None)),
|
489 |
+
stackgroup='one', # This makes it a stacked area chart
|
490 |
+
fillcolor=colors.get(label, None),
|
491 |
+
hovertemplate=f'{label.capitalize()}: %{{y:.2f}}<extra></extra>'
|
492 |
+
)
|
493 |
+
)
|
494 |
+
|
495 |
+
# Improve layout
|
496 |
+
fig.update_layout(
|
497 |
+
title={
|
498 |
+
'text': "Voice Emotion Distribution Over Time",
|
499 |
+
'font': {'size': 22, 'family': 'Arial, sans-serif'}
|
500 |
+
},
|
501 |
+
xaxis_title="Time (seconds)",
|
502 |
+
yaxis_title="Emotion Intensity",
|
503 |
+
yaxis=dict(
|
504 |
+
showgrid=True,
|
505 |
+
gridcolor='rgba(230, 230, 230, 0.8)'
|
506 |
+
),
|
507 |
+
xaxis=dict(
|
508 |
+
showgrid=True,
|
509 |
+
gridcolor='rgba(230, 230, 230, 0.8)'
|
510 |
+
),
|
511 |
+
plot_bgcolor='white',
|
512 |
+
legend=dict(
|
513 |
+
bordercolor='rgba(0,0,0,0.1)',
|
514 |
+
borderwidth=1,
|
515 |
+
orientation="h",
|
516 |
+
yanchor="bottom",
|
517 |
+
y=1.02,
|
518 |
+
xanchor="right",
|
519 |
+
x=1
|
520 |
+
),
|
521 |
+
hovermode='closest',
|
522 |
+
height=500,
|
523 |
+
margin=dict(l=10, r=10, t=80, b=50)
|
524 |
+
)
|
525 |
+
|
526 |
+
return fig
|
527 |
+
|
528 |
+
def generate_emotion_summary(all_emotions):
|
529 |
+
"""
|
530 |
+
Produce an improved textual summary of the overall emotion distribution.
|
531 |
+
"""
|
532 |
+
if not all_emotions:
|
533 |
+
return "No emotional content detected."
|
534 |
+
|
535 |
+
emotion_counts = {}
|
536 |
+
emotion_confidence = {}
|
537 |
+
total_chunks = len(all_emotions)
|
538 |
+
|
539 |
+
for chunk_emotions in all_emotions:
|
540 |
+
top_emotion = max(chunk_emotions, key=lambda x: x['score'])
|
541 |
+
label = top_emotion["label"]
|
542 |
+
confidence = top_emotion["score"]
|
543 |
+
|
544 |
+
emotion_counts[label] = emotion_counts.get(label, 0) + 1
|
545 |
+
emotion_confidence[label] = emotion_confidence.get(label, 0) + confidence
|
546 |
+
|
547 |
+
# Calculate average confidence for each emotion
|
548 |
+
for emotion in emotion_confidence:
|
549 |
+
if emotion_counts[emotion] > 0:
|
550 |
+
emotion_confidence[emotion] /= emotion_counts[emotion]
|
551 |
+
|
552 |
+
# Dominant emotion (highest percentage)
|
553 |
+
dominant_emotion = max(emotion_counts, key=emotion_counts.get)
|
554 |
+
dominant_pct = (emotion_counts[dominant_emotion] / total_chunks) * 100
|
555 |
+
|
556 |
+
# Most confident emotion (might differ from dominant)
|
557 |
+
most_confident = max(emotion_confidence, key=emotion_confidence.get)
|
558 |
+
|
559 |
+
# Tone grouping analysis
|
560 |
+
tone_group_counts = {group: 0 for group in TONE_MAPPING}
|
561 |
+
for emotion, count in emotion_counts.items():
|
562 |
+
for tone_group, emotions in TONE_MAPPING.items():
|
563 |
+
if emotion in emotions:
|
564 |
+
tone_group_counts[tone_group] += count
|
565 |
+
|
566 |
+
dominant_tone = max(tone_group_counts, key=tone_group_counts.get)
|
567 |
+
dominant_tone_pct = (tone_group_counts[dominant_tone] / total_chunks) * 100
|
568 |
+
|
569 |
+
# Build summary with markdown formatting
|
570 |
+
summary = f"### Voice Emotion Analysis Summary\n\n"
|
571 |
+
summary += f"**Dominant emotion:** {dominant_emotion.capitalize()} ({dominant_pct:.1f}%)\n\n"
|
572 |
+
|
573 |
+
if dominant_emotion != most_confident and emotion_confidence[most_confident] > 0.7:
|
574 |
+
summary += f"**Most confident detection:** {most_confident.capitalize()} "
|
575 |
+
summary += f"(avg. confidence: {emotion_confidence[most_confident]:.2f})\n\n"
|
576 |
+
|
577 |
+
summary += f"**Overall tone:** {dominant_tone.capitalize()} ({dominant_tone_pct:.1f}%)\n\n"
|
578 |
+
summary += f"**Description:** {EMOTION_DESCRIPTIONS.get(dominant_emotion, '')}\n\n"
|
579 |
+
|
580 |
+
# Show emotion distribution as sorted list
|
581 |
+
summary += "**Emotion distribution:**\n"
|
582 |
+
for emotion, count in sorted(emotion_counts.items(), key=lambda x: x[1], reverse=True):
|
583 |
+
percentage = (count / total_chunks) * 100
|
584 |
+
avg_conf = emotion_confidence[emotion]
|
585 |
+
summary += f"- {emotion.capitalize()}: {percentage:.1f}% (confidence: {avg_conf:.2f})\n"
|
586 |
+
|
587 |
+
# Add interpretation based on dominant emotion
|
588 |
+
summary += f"\n**Interpretation:**\n"
|
589 |
+
|
590 |
+
if dominant_emotion == "happy":
|
591 |
+
summary += "The voice conveys primarily positive emotions, suggesting enthusiasm, satisfaction, or joy."
|
592 |
+
elif dominant_emotion == "neutral":
|
593 |
+
summary += "The voice maintains an even emotional tone, suggesting composure or professional delivery."
|
594 |
+
elif dominant_emotion == "sad":
|
595 |
+
summary += "The voice conveys melancholy or disappointment, potentially indicating concern or distress."
|
596 |
+
elif dominant_emotion == "angry":
|
597 |
+
summary += "The voice shows frustration or assertiveness, suggesting strong conviction or displeasure."
|
598 |
+
elif dominant_emotion == "fear":
|
599 |
+
summary += "The voice reveals anxiety or nervousness, suggesting uncertainty or concern."
|
600 |
+
elif dominant_emotion == "disgust":
|
601 |
+
summary += "The voice expresses disapproval or aversion, suggesting rejection of discussed concepts."
|
602 |
+
elif dominant_emotion == "surprise":
|
603 |
+
summary += "The voice shows unexpected reactions, suggesting discovery of new information or astonishment."
|
604 |
+
|
605 |
+
return summary
|
606 |
+
|
607 |
+
def build_detailed_results(all_emotions, time_points):
|
608 |
+
"""
|
609 |
+
Return a list of dictionaries containing chunk start-end, top emotion, confidence, description.
|
610 |
+
Suitable for Gradio DataFrame display.
|
611 |
+
"""
|
612 |
+
results_list = []
|
613 |
+
for (emotions, (start_time, end_time)) in zip(all_emotions, time_points):
|
614 |
+
top_emotion = max(emotions, key=lambda x: x['score'])
|
615 |
+
label = top_emotion["label"]
|
616 |
+
|
617 |
+
# Find second highest emotion if available
|
618 |
+
if len(emotions) > 1:
|
619 |
+
sorted_emotions = sorted(emotions, key=lambda x: x['score'], reverse=True)
|
620 |
+
second_emotion = sorted_emotions[1]["label"].capitalize()
|
621 |
+
second_score = sorted_emotions[1]["score"]
|
622 |
+
secondary = f" ({second_emotion}: {second_score:.2f})"
|
623 |
+
else:
|
624 |
+
secondary = ""
|
625 |
+
|
626 |
+
results_list.append({
|
627 |
+
"Time Range": f"{start_time:.1f}s - {end_time:.1f}s",
|
628 |
+
"Primary Emotion": label.capitalize(),
|
629 |
+
"Confidence": f"{top_emotion['score']:.2f}{secondary}",
|
630 |
+
"Description": EMOTION_DESCRIPTIONS.get(label, "")
|
631 |
+
})
|
632 |
+
return results_list
|
633 |
+
|
634 |
+
def process_audio(audio_file, progress=gr.Progress()):
|
635 |
+
"""
|
636 |
+
Main handler for Gradio:
|
637 |
+
1) Emotion analysis (returns Plotly figure).
|
638 |
+
2) Tone analysis (returns descriptive text).
|
639 |
+
"""
|
640 |
+
if not audio_file:
|
641 |
+
return None, None, "No audio file provided.", None, "No tone analysis."
|
642 |
+
|
643 |
+
# 1) Analyze emotions
|
644 |
+
fig, summary_text, detailed_results = analyze_audio_emotions(audio_file, progress)
|
645 |
+
if not fig: # Error or missing
|
646 |
+
return None, None, "Failed to analyze audio emotions.", None, "Tone analysis unavailable."
|
647 |
+
|
648 |
+
# 2) Generate alternative chart
|
649 |
+
# Extract the necessary data from detailed_results to create time_points
|
650 |
+
time_points = []
|
651 |
+
for result in detailed_results:
|
652 |
+
time_range = result["Time Range"]
|
653 |
+
start_time = float(time_range.split("s")[0])
|
654 |
+
end_time = float(time_range.split(" - ")[1].split("s")[0])
|
655 |
+
time_points.append((start_time, end_time))
|
656 |
+
|
657 |
+
# Extract emotion data from detailed_results
|
658 |
+
all_emotions = []
|
659 |
+
for result in detailed_results:
|
660 |
+
# Parse the primary emotion and confidence
|
661 |
+
primary_emotion = result["Primary Emotion"].lower()
|
662 |
+
confidence_str = result["Confidence"].split("(")[0].strip()
|
663 |
+
primary_confidence = float(confidence_str)
|
664 |
+
|
665 |
+
# Create a list of emotion dictionaries for this time point
|
666 |
+
emotions_at_time = [{"label": primary_emotion, "score": primary_confidence}]
|
667 |
+
|
668 |
+
# Check if there's a secondary emotion
|
669 |
+
if "(" in result["Confidence"]:
|
670 |
+
secondary_part = result["Confidence"].split("(")[1].split(")")[0]
|
671 |
+
secondary_emotion = secondary_part.split(":")[0].strip().lower()
|
672 |
+
secondary_confidence = float(secondary_part.split(":")[1].strip())
|
673 |
+
emotions_at_time.append({"label": secondary_emotion, "score": secondary_confidence})
|
674 |
+
|
675 |
+
# Add remaining emotions with zero confidence
|
676 |
+
for emotion in EMOTION_DESCRIPTIONS.keys():
|
677 |
+
if emotion not in [e["label"] for e in emotions_at_time]:
|
678 |
+
emotions_at_time.append({"label": emotion, "score": 0.0})
|
679 |
+
|
680 |
+
all_emotions.append(emotions_at_time)
|
681 |
+
|
682 |
+
# Now we can generate the alternative chart
|
683 |
+
alt_fig = generate_alternative_chart(all_emotions, time_points)
|
684 |
+
|
685 |
+
# 3) Analyze tone
|
686 |
+
tone_analysis = analyze_voice_tone(audio_file)
|
687 |
+
|
688 |
+
return fig, alt_fig, summary_text, detailed_results, tone_analysis
|
689 |
+
|
690 |
+
# Create Gradio interface with improved UI/UX
|
691 |
+
with gr.Blocks(title="Voice Emotion & Tone Analysis System", theme=gr.themes.Soft()) as demo:
|
692 |
+
gr.Markdown("""
|
693 |
+
# 🎙️ Voice Emotion & Tone Analysis System
|
694 |
+
|
695 |
+
This app provides professional analysis of:
|
696 |
+
- **Emotions** in your voice (Anger, Disgust, Fear, Happy, Neutral, Sad, Surprise)
|
697 |
+
- **Tone characteristics** (based on pitch, energy, and speech patterns)
|
698 |
+
|
699 |
+
The interactive timeline shows emotion confidence scores throughout your audio.
|
700 |
+
""")
|
701 |
+
|
702 |
+
with gr.Tabs():
|
703 |
+
# Tab 1: Upload
|
704 |
+
with gr.TabItem("Upload Audio"):
|
705 |
+
with gr.Row():
|
706 |
+
with gr.Column(scale=1):
|
707 |
+
audio_input = gr.Audio(
|
708 |
+
label="Upload Audio File",
|
709 |
+
type="filepath",
|
710 |
+
sources=["upload"],
|
711 |
+
elem_id="audio_upload"
|
712 |
+
)
|
713 |
+
process_btn = gr.Button("Analyze Voice", variant="primary")
|
714 |
+
gr.Markdown("""
|
715 |
+
**Supports:** MP3, WAV, M4A, and most audio formats
|
716 |
+
**For best results:** Use a clear voice recording with minimal background noise
|
717 |
+
""")
|
718 |
+
with gr.Column(scale=2):
|
719 |
+
with gr.Tabs():
|
720 |
+
with gr.TabItem("Line Chart"):
|
721 |
+
emotion_timeline = gr.Plot(label="Emotion Timeline",
|
722 |
+
elem_id="emotion_plot",
|
723 |
+
container=True)
|
724 |
+
with gr.TabItem("Area Chart"):
|
725 |
+
emotion_area_chart = gr.Plot(label="Emotion Distribution",
|
726 |
+
elem_id="emotion_area_plot",
|
727 |
+
container=True)
|
728 |
+
with gr.Row():
|
729 |
+
with gr.Column():
|
730 |
+
emotion_summary = gr.Markdown(label="Emotion Summary")
|
731 |
+
with gr.Column():
|
732 |
+
tone_analysis_output = gr.Markdown(label="Tone Analysis")
|
733 |
+
with gr.Row():
|
734 |
+
emotion_results = gr.DataFrame(
|
735 |
+
headers=["Time Range", "Primary Emotion", "Confidence", "Description"],
|
736 |
+
label="Detailed Emotion Analysis"
|
737 |
+
)
|
738 |
+
|
739 |
+
process_btn.click(
|
740 |
+
fn=process_audio,
|
741 |
+
inputs=[audio_input],
|
742 |
+
outputs=[emotion_timeline, emotion_area_chart, emotion_summary, emotion_results, tone_analysis_output]
|
743 |
+
)
|
744 |
+
|
745 |
+
# Tab 2: Record
|
746 |
+
with gr.TabItem("Record Voice"):
|
747 |
+
with gr.Row():
|
748 |
+
with gr.Column(scale=1):
|
749 |
+
record_input = gr.Audio(
|
750 |
+
label="Record Your Voice",
|
751 |
+
sources=["microphone"],
|
752 |
+
type="filepath",
|
753 |
+
elem_id="record_audio"
|
754 |
+
)
|
755 |
+
analyze_btn = gr.Button("Analyze Recording", variant="primary")
|
756 |
+
gr.Markdown("""
|
757 |
+
**Tips:**
|
758 |
+
- Speak clearly and at a normal pace
|
759 |
+
- Record at least 10-15 seconds for more accurate analysis
|
760 |
+
- Try different emotional tones to see how they're detected
|
761 |
+
""")
|
762 |
+
with gr.Column(scale=2):
|
763 |
+
with gr.Tabs():
|
764 |
+
with gr.TabItem("Line Chart"):
|
765 |
+
rec_emotion_timeline = gr.Plot(label="Emotion Timeline",
|
766 |
+
elem_id="record_emotion_plot",
|
767 |
+
container=True)
|
768 |
+
with gr.TabItem("Area Chart"):
|
769 |
+
rec_emotion_area_chart = gr.Plot(label="Emotion Distribution",
|
770 |
+
elem_id="record_emotion_area_plot",
|
771 |
+
container=True)
|
772 |
+
with gr.Row():
|
773 |
+
with gr.Column():
|
774 |
+
rec_emotion_summary = gr.Markdown(label="Emotion Summary")
|
775 |
+
with gr.Column():
|
776 |
+
rec_tone_analysis_output = gr.Markdown(label="Tone Analysis")
|
777 |
+
with gr.Row():
|
778 |
+
rec_emotion_results = gr.DataFrame(
|
779 |
+
headers=["Time Range", "Primary Emotion", "Confidence", "Description"],
|
780 |
+
label="Detailed Emotion Analysis"
|
781 |
+
)
|
782 |
+
|
783 |
+
analyze_btn.click(
|
784 |
+
fn=process_audio,
|
785 |
+
inputs=[record_input],
|
786 |
+
outputs=[rec_emotion_timeline, rec_emotion_area_chart, rec_emotion_summary, rec_emotion_results, rec_tone_analysis_output]
|
787 |
+
)
|
788 |
+
|
789 |
+
# Tab 3: About & Help
|
790 |
+
with gr.TabItem("About & Help"):
|
791 |
+
gr.Markdown("""
|
792 |
+
## About This System
|
793 |
+
|
794 |
+
This voice emotion & tone analysis system uses state-of-the-art deep learning models to detect emotions and analyze vocal characteristics. The system is built on HuBERT (Hidden Unit BERT) architecture trained on speech emotion recognition tasks.
|
795 |
+
|
796 |
+
### How It Works
|
797 |
+
|
798 |
+
1. **Audio Processing**: Your audio is processed in short segments (chunks) to capture emotion variations over time.
|
799 |
+
2. **Emotion Classification**: Each segment is analyzed by a neural network to detect emotional patterns.
|
800 |
+
3. **Tone Analysis**: Acoustic features like pitch, energy, and rhythm are analyzed to describe voice tone characteristics.
|
801 |
+
|
802 |
+
### Emotion Categories
|
803 |
+
|
804 |
+
The system detects seven standard emotions:
|
805 |
+
|
806 |
+
- **Angry**: Voice shows irritation, hostility, or aggression. Tone may be harsh, loud, or intense.
|
807 |
+
- **Disgust**: Voice expresses revulsion or strong disapproval. Tone may sound repulsed or contemptuous.
|
808 |
+
- **Fear**: Voice reveals anxiety, worry, or dread. Tone may be shaky, hesitant, or tense.
|
809 |
+
- **Happy**: Voice conveys joy, pleasure, or positive emotions. Tone is often bright, energetic, and uplifted.
|
810 |
+
- **Neutral**: Voice lacks strong emotional signals. Tone is even, moderate, and relatively flat.
|
811 |
+
- **Sad**: Voice expresses sorrow, unhappiness, or melancholy. Tone may be quiet, heavy, or subdued.
|
812 |
+
- **Surprise**: Voice reflects unexpected reactions. Tone may be higher pitched, quick, or energetic.
|
813 |
+
|
814 |
+
### Tips for Best Results
|
815 |
+
|
816 |
+
- Use clear audio with minimal background noise
|
817 |
+
- Speak naturally at a comfortable volume
|
818 |
+
- Record at least 10-15 seconds of speech
|
819 |
+
- For tone analysis, longer recordings (30+ seconds) provide more accurate results
|
820 |
+
|
821 |
+
### Privacy Notice
|
822 |
+
|
823 |
+
All audio processing happens on your device. No audio recordings or analysis results are stored or transmitted to external servers.
|
824 |
+
""")
|
825 |
+
|
826 |
+
gr.Markdown("""
|
827 |
+
---
|
828 |
+
### System Information
|
829 |
+
|
830 |
+
- **Model**: HuBERT Large for Speech Emotion Recognition
|
831 |
+
- **Version**: 1.2.0
|
832 |
+
- **Libraries**: PyTorch, Transformers, Librosa, Plotly
|
833 |
+
|
834 |
+
This application demonstrates the use of AI for speech emotion recognition and acoustic analysis. For research and educational purposes only.
|
835 |
+
""")
|
836 |
+
|
837 |
+
# Check if model can load before launching interface
|
838 |
+
print("Checking model availability...")
|
839 |
+
load_success = load_emotion_model()
|
840 |
+
if not load_success:
|
841 |
+
print("Warning: Emotion model failed to load. Application may have limited functionality.")
|
842 |
+
|
843 |
+
# Launch the demo
|
844 |
+
if __name__ == "__main__":
|
845 |
+
demo.launch()
|