Spaces:
Running
Running
File size: 8,488 Bytes
1695c47 5b7fdba 1695c47 5b7fdba 1695c47 722ee9c 1695c47 2a856ec 5b7fdba 1695c47 a6db83f 1695c47 a6db83f 1695c47 5b7fdba 722ee9c 5b7fdba 722ee9c 5b7fdba 1695c47 2a856ec 1695c47 2a856ec 1695c47 5b7fdba 1695c47 722ee9c 1695c47 722ee9c 5b7fdba 722ee9c 5b7fdba 1695c47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import streamlit as st
from io import BytesIO
import ibm_watsonx_ai
import secretsload
import anton_ego_jimmy
import requests
import time
import regex
import re
from datetime import datetime
from jinja2 import Template
from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai import Credentials, APIClient
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams
from secretsload import load_stsecrets # script to load credentials from HuggingFace secrets section
# New imports for ReportLab
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from reportlab.lib.enums import TA_LEFT, TA_RIGHT
credentials = load_stsecrets()
st.set_page_config(
page_title="Jimmy",
page_icon="π§",
initial_sidebar_state="collapsed",
layout="centered"
)
# Password protection
def check_password():
def password_entered():
if st.session_state["password"] == st.secrets["app_password"]:
st.session_state["password_correct"] = True
del st.session_state["password"]
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Designed and developed by Milan Mrdenovic Β© IBM Norway 2025")
return False
elif not st.session_state["password_correct"]:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Designed and developed by Milan Mrdenovic Β© IBM Norway 2025")
st.error("π Password incorrect")
return False
else:
return True
if not check_password():
st.stop()
# Initialize session state
if 'current_page' not in st.session_state:
st.session_state.current_page = 0
def initialize_session_state():
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
def setup_client():
credentials = Credentials(
url=st.secrets["url"],
api_key=st.secrets["api_key"]
)
apo = st.secrets["api_key"]
client = APIClient(credentials, project_id=st.secrets["project_id"])
return client
client = setup_client()
def prepare_prompt(prompt, chat_history):
if anton_ego_jimmy.TYPE == "chat" and chat_history:
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
return f"Conversation History:\n{chats}\n\nNew Message: {prompt}"
return prompt
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
model_family_syntax = {
"llama3-instruct (llama-3 & 3.1) - system": """\n<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"llama3-instruct (llama-3 & 3.1) - user": """\n<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"granite-13b-chat & instruct - system": """\n<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"granite-13b-chat & instruct - user": """\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"llama2-chat - system": """\n[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n{prompt} [/INST]\n""",
"llama2-chat - user": """\n[INST] {prompt} [/INST] """,
"mistral & mixtral v2 tokenizer - system": """\n<s>[INST]System Prompt:[{system_prompt}]\n\n{prompt} [/INST]\n""",
"mistral & mixtral v2 tokenizer - system segmented": """\n<s>[INST]System Prompt:{system_prompt}[/INST][INST]{prompt} [/INST]\n""",
"mistral & mixtral v2 tokenizer - user": """\n<s>[INST]{prompt} [/INST]\n"""
}
if bake_in_prompt_syntax:
template = model_family_syntax[prompt_template]
if system_prompt:
return template.format(system_prompt=system_prompt, prompt=prompt)
return prompt
def generate_response(watsonx_llm, prompt_data, params):
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
for chunk in generated_response:
yield chunk
emoji_pattern = regex.compile(r'\p{Emoji}', flags=regex.UNICODE)
def remove_emojis(text):
return emoji_pattern.sub(r'', text)
def create_pdf_from_chat(chat_history):
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter, topMargin=30, bottomMargin=30)
styles = getSampleStyleSheet()
flowables = []
title_style = ParagraphStyle('Title', parent=styles['Heading1'], fontSize=18, spaceAfter=20)
flowables.append(Paragraph(f"Chat History - Generated on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}", title_style))
user_style = ParagraphStyle('UserStyle', parent=styles['Normal'],
backColor=colors.lightblue, borderPadding=10,
alignment=TA_RIGHT)
jimmy_style = ParagraphStyle('JimmyStyle', parent=styles['Normal'],
backColor=colors.lavender, borderPadding=10)
for message in chat_history:
role = message["role"]
content = remove_emojis(message["content"])
style = user_style if role == "user" else jimmy_style
flowables.append(Paragraph(f"<b>{role.capitalize()}:</b> {content}", style))
flowables.append(Spacer(1, 12))
doc.build(flowables)
buffer.seek(0)
return buffer
def get_response(user_input):
# Prepare the prompt
prompt = prepare_prompt(user_input, st.session_state.chat_history)
# Apply prompt syntax
prompt_data = apply_prompt_syntax(
prompt,
anton_ego_jimmy.SYSTEM_PROMPT,
anton_ego_jimmy.PROMPT_TEMPLATE,
anton_ego_jimmy.BAKE_IN_PROMPT_SYNTAX
)
watsonx_llm = ModelInference(
api_client=client,
model_id=anton_ego_jimmy.SELECTED_MODEL,
verify=anton_ego_jimmy.VERIFY
)
# Prepare parameters
params = {
GenParams.DECODING_METHOD: anton_ego_jimmy.DECODING_METHOD,
GenParams.MAX_NEW_TOKENS: anton_ego_jimmy.MAX_NEW_TOKENS,
GenParams.MIN_NEW_TOKENS: anton_ego_jimmy.MIN_NEW_TOKENS,
GenParams.REPETITION_PENALTY: anton_ego_jimmy.REPETITION_PENALTY,
GenParams.STOP_SEQUENCES: anton_ego_jimmy.STOP_SEQUENCES
}
print(prompt_data, params)
# Generate and stream response
with st.chat_message("Jimmy", avatar="π§"):
stream = generate_response(watsonx_llm, prompt_data, params)
response = st.write_stream(stream)
# Add AI response to chat history
st.session_state.chat_history.append({"role": "Jimmy", "content": response})
return response
def main():
initialize_session_state()
st.subheader("Jimmy π§")
if anton_ego_jimmy.DISPLAY_CHAT_HISTORY == 1:
for message in st.session_state.chat_history:
with st.chat_message(message["role"], avatar="π₯·π»" if message["role"] == "user" else "π§"):
st.markdown(message["content"])
user_input = st.chat_input("You:", key="user_input")
if user_input:
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input})
with st.chat_message("user", avatar="π₯·π»"):
st.markdown(user_input)
# Get response
get_response(user_input)
if st.session_state.chat_history:
now = datetime.now()
date_str = now.strftime("%Y-%m-%d")
try:
pdf_buffer = create_pdf_from_chat(st.session_state.chat_history)
st.download_button(
label="Download Chat History as PDF",
data=pdf_buffer,
file_name=f"chat_history_{date_str}.pdf",
mime="application/pdf"
)
except Exception as e:
st.error(f"An error occurred while generating the PDF: {str(e)}")
st.error("If this persists, please contact support.")
if __name__ == "__main__":
main() |