File size: 6,327 Bytes
5aec14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import logging
import traceback
from typing import Optional, Dict, Any, Tuple
from huggingface_hub import InferenceClient
from utils.meldrx import MeldRxAPI
from utils.pdfutils import PDFGenerator
from utils.responseparser import PatientDataExtractor
from datetime import datetime

# Set up logging with detailed output
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise ValueError("HF_TOKEN environment variable not set.")
client = InferenceClient(api_key=HF_TOKEN)
MODEL_NAME = "meta-llama/Llama-3.3-70B-Instruct"

def generate_ai_discharge_summary(patient_dict: Dict[str, str]) -> Optional[str]:
    """Generate a discharge summary using AI based on extracted patient data."""
    try:
        patient_info = (
            f"Patient Name: {patient_dict['first_name']} {patient_dict['last_name']}\n"
            f"Gender: {patient_dict['sex']}\n"
            f"Age: {patient_dict['age']}\n"
            f"Date of Birth: {patient_dict['dob']}\n"
            f"Admission Date: {patient_dict['admission_date']}\n"
            f"Discharge Date: {patient_dict['discharge_date']}\n\n"
            f"Diagnosis:\n{patient_dict['diagnosis']}\n\n"
            f"Medications:\n{patient_dict['medications']}\n\n"
            f"Discharge Instructions:\n[Generated based on available data]"
        )

        logger.info("Generating AI discharge summary with patient info: %s", patient_info)

        messages = [
            {
                "role": "assistant",
                "content": (
                    "You are a senior medical practitioner tasked with creating discharge summaries. "
                    "Generate a complete discharge summary based on the provided patient information."
                )
            },
            {"role": "user", "content": patient_info}
        ]

        stream = client.chat.completions.create(
            model=MODEL_NAME,
            messages=messages,
            temperature=0.4,
            max_tokens=3584,
            top_p=0.7,
            stream=True
        )

        discharge_summary = ""
        for chunk in stream:
            content = chunk.choices[0].delta.content
            if content:
                discharge_summary += content

        logger.info("AI discharge summary generated successfully")
        return discharge_summary.strip()

    except Exception as e:
        logger.error("Error generating AI discharge summary: %s\n%s", str(e), traceback.format_exc())
        return None

def generate_discharge_paper_one_click(
    meldrx_api: MeldRxAPI,
    patient_id: str = None,
    first_name: str = None,
    last_name: str = None
) -> Tuple[Optional[str], str, Optional[str]]:
    """Generate a discharge paper with AI content in one click."""
    try:
        if not meldrx_api.access_token:
            if not meldrx_api.authenticate():
                return None, "Error: Authentication failed. Please authenticate first.", None

        logger.info("Fetching patient data from MeldRx API")
        patient_data = meldrx_api.get_patients()
        if not patient_data:
            return None, "Error: No patient data returned from MeldRx API.", None
        if "entry" not in patient_data:
            logger.error("Invalid patient data format: %s", patient_data)
            return None, "Error: Patient data is not in expected FHIR Bundle format.", None

        logger.info("Extracting patient data")
        extractor = PatientDataExtractor(patient_data, format_type="json")
        patients = extractor.get_all_patients()

        if not patients:
            return None, "Error: No patients found in the workspace.", None

        patient_dict = None
        if patient_id:
            for p in patients:
                extractor.set_patient_by_index(patients.index(p))
                if extractor.get_id() == patient_id:
                    patient_dict = p
                    break
            if not patient_dict:
                return None, f"Error: Patient with ID {patient_id} not found.", None
        elif first_name and last_name:
            patient_dict = next(
                (p for p in patients if
                 p["first_name"].lower() == first_name.lower() and
                 p["last_name"].lower() == last_name.lower()),
                None
            )
            if not patient_dict:
                return None, f"Error: Patient with name {first_name} {last_name} not found.", None
        else:
            patient_dict = patients[0]

        logger.info("Selected patient: %s %s", patient_dict['first_name'], patient_dict['last_name'])

        ai_content = generate_ai_discharge_summary(patient_dict)
        if not ai_content:
            return None, "Error: Failed to generate AI discharge summary.", None

        display_summary = (
            f"<div style='color:#00FFFF; font-family: monospace;'>"
            f"<strong>Discharge Summary Preview</strong><br>"
            f"- Name: {patient_dict['first_name']} {patient_dict['last_name']}<br>"
            f"- DOB: {patient_dict['dob']}, Age: {patient_dict['age']}, Sex: {patient_dict['sex']}<br>"
            f"- Address: {patient_dict['address']}, {patient_dict['city']}, {patient_dict['state']} {patient_dict['zip_code']}<br>"
            f"- Admission Date: {patient_dict['admission_date']}<br>"
            f"- Discharge Date: {patient_dict['discharge_date']}<br>"
            f"- Diagnosis: {patient_dict['diagnosis']}<br>"
            f"- Medications: {patient_dict['medications']}<br>"
            f"</div>"
        )

        pdf_generator = PDFGenerator()
        pdf_path = pdf_generator.generate_pdf_from_text(
            ai_content,
            f"discharge_summary_{patient_id or 'unknown'}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.pdf"
        )

        if pdf_path:
            return pdf_path, f"Success: Discharge paper generated for {patient_dict['first_name']} {patient_dict['last_name']}", display_summary
        return None, "Error: Failed to generate PDF.", display_summary

    except Exception as e:
        logger.error("Error in one-click discharge generation: %s\n%s", str(e), traceback.format_exc())
        return None, f"Error: {str(e)}", None