File size: 7,949 Bytes
4cc0ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import re
import json
import time
import tempfile
from typing import Dict, Any, List, Optional
from transformers import AutoTokenizer
from sentence_transformers import SentenceTransformer
from huggingface_hub import login

GEMINI_MODEL = "gemini-2.0-flash"
DEFAULT_TEMPERATURE = 0.7

TOKENIZER_MODEL = "answerdotai/ModernBERT-base"
SENTENCE_TRANSFORMER_MODEL = "all-MiniLM-L6-v2"

hf_token = os.environ.get('HF_TOKEN', None)
login(token=hf_token)

tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_MODEL)
sentence_model = SentenceTransformer(SENTENCE_TRANSFORMER_MODEL)

def clean_text(text):
    text = re.sub(r'\[speaker_\d+\]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text

def split_text_by_tokens(text, max_tokens=12000):
    text = clean_text(text)
    tokens = tokenizer.encode(text)
    
    if len(tokens) <= max_tokens:
        return [text]
    
    split_point = len(tokens) // 2
    
    sentences = re.split(r'(?<=[.!?])\s+', text)
    
    first_half = []
    second_half = []
    
    current_tokens = 0
    for sentence in sentences:
        sentence_tokens = len(tokenizer.encode(sentence))
        
        if current_tokens + sentence_tokens <= split_point:
            first_half.append(sentence)
            current_tokens += sentence_tokens
        else:
            second_half.append(sentence)
    
    return [" ".join(first_half), " ".join(second_half)]

def generate_with_gemini(text, api_key, language, content_type="summary"):
    from langchain_google_genai import ChatGoogleGenerativeAI
    os.environ["GOOGLE_API_KEY"] = api_key
    llm = ChatGoogleGenerativeAI(
        model=GEMINI_MODEL,
        temperature=DEFAULT_TEMPERATURE,
        max_retries=3
    )
    
    if content_type == "summary":
        base_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=text)
    else:
        base_prompt = QUIZ_PROMPT_TEMPLATE.format(text=text)

    language_instruction = f"\nIMPORTANT: Generate ALL content in {language} language."
    prompt = base_prompt + language_instruction
    
    try:
        messages = [
            {"role": "system", "content": "You are a helpful AI assistant that creates high-quality text summaries and quizzes."},
            {"role": "user", "content": prompt}
        ]
        
        response = llm.invoke(messages)
        
        try:
            content = response.content
            json_match = re.search(r'```json\s*([\s\S]*?)\s*```', content)
            
            if json_match:
                json_str = json_match.group(1)
            else:
                json_match = re.search(r'(\{[\s\S]*\})', content)
                if json_match:
                    json_str = json_match.group(1)
                else:
                    json_str = content
            
            # Parse the JSON
            function_call = json.loads(json_str)
            return function_call
        except json.JSONDecodeError:
            raise Exception("Could not parse JSON from LLM response")
    except Exception as e:
        raise Exception(f"Error calling API: {str(e)}")

def format_summary_for_display(results, language="English"):
    output = []
    
    if language == "Uzbek":
        segment_header = "QISM"
        key_concepts_header = "ASOSIY TUSHUNCHALAR"
        summary_header = "QISQACHA MAZMUN"
    elif language == "Russian":
        segment_header = "СЕГМЕНТ"
        key_concepts_header = "КЛЮЧЕВЫЕ ПОНЯТИЯ"
        summary_header = "КРАТКОЕ СОДЕРЖАНИЕ"
    else:
        segment_header = "SEGMENT"
        key_concepts_header = "KEY CONCEPTS"
        summary_header = "SUMMARY"
    
    segments = results.get("segments", [])
    for i, segment in enumerate(segments):
        topic = segment["topic_name"]
        segment_num = i + 1 
        output.append(f"\n\n{'='*40}")
        output.append(f"{segment_header} {segment_num}: {topic}")
        output.append(f"{'='*40}\n")
        output.append(f"{key_concepts_header}:")
        for concept in segment["key_concepts"]:
            output.append(f"• {concept}")
        output.append(f"\n{summary_header}:")
        output.append(segment["summary"])
    
    return "\n".join(output)

def format_quiz_for_display(results, language="English"):
    output = []
    
    if language == "Uzbek":
        quiz_questions_header = "TEST SAVOLLARI"
    elif language == "Russian":
        quiz_questions_header = "ТЕСТОВЫЕ ВОПРОСЫ"
    else:
        quiz_questions_header = "QUIZ QUESTIONS"
    
    output.append(f"{'='*40}")
    output.append(f"{quiz_questions_header}")
    output.append(f"{'='*40}\n")
    
    quiz_questions = results.get("quiz_questions", [])
    for i, q in enumerate(quiz_questions):
        output.append(f"\n{i+1}. {q['question']}")
        for j, option in enumerate(q['options']):
            letter = chr(97 + j).upper()
            correct_marker = " ✓" if option["correct"] else ""
            output.append(f"   {letter}. {option['text']}{correct_marker}")
    
    return "\n".join(output)

def analyze_document(text, gemini_api_key, language, content_type="summary"):
    try:
        start_time = time.time()
        text_parts = split_text_by_tokens(text)

        input_tokens = 0        
        output_tokens = 0
        
        if content_type == "summary":
            all_results = {"segments": []}
            segment_counter = 1
            
            for part in text_parts:
                actual_prompt = SUMMARY_PROMPT_TEMPLATE.format(text=part)
                prompt_tokens = len(tokenizer.encode(actual_prompt))
                input_tokens += prompt_tokens
                
                analysis = generate_with_gemini(part, gemini_api_key, language, "summary")
                
                if "segments" in analysis:
                    for segment in analysis["segments"]:
                        segment["segment_number"] = segment_counter
                        all_results["segments"].append(segment)
                        segment_counter += 1
            
            formatted_output = format_summary_for_display(all_results, language)
            
        else:  # Quiz generation
            all_results = {"quiz_questions": []}
            
            for part in text_parts:
                actual_prompt = QUIZ_PROMPT_TEMPLATE.format(text=part)
                prompt_tokens = len(tokenizer.encode(actual_prompt))
                input_tokens += prompt_tokens
                
                analysis = generate_with_gemini(part, gemini_api_key, language, "quiz")
                
                if "quiz_questions" in analysis:
                    remaining_slots = 10 - len(all_results["quiz_questions"])
                    if remaining_slots > 0:
                        questions_to_add = analysis["quiz_questions"][:remaining_slots]
                        all_results["quiz_questions"].extend(questions_to_add)
            
            formatted_output = format_quiz_for_display(all_results, language)
        
        end_time = time.time()
        total_time = end_time - start_time
        
        output_tokens = len(tokenizer.encode(formatted_output))
        token_info = f"Input tokens: {input_tokens}\nOutput tokens: {output_tokens}\nTotal tokens: {input_tokens + output_tokens}\n"
        formatted_text = f"Total Processing time: {total_time:.2f}s\n{token_info}\n" + formatted_output

        json_path = tempfile.mktemp(suffix='.json')
        with open(json_path, 'w', encoding='utf-8') as json_file:
            json.dump(all_results, json_file, indent=2)
        
        txt_path = tempfile.mktemp(suffix='.txt')
        with open(txt_path, 'w', encoding='utf-8') as txt_file:
            txt_file.write(formatted_text)
            
        return formatted_text, json_path, txt_path
    except Exception as e:
        error_message = f"Error processing document: {str(e)}"
        return error_message, None, None