MrSimple01's picture
Update app.py
bfe7fc0 verified
raw
history blame
6.69 kB
import os
import gradio as gr
import requests
import json
from moviepy import VideoFileClip
import uuid
import time
import soundfile as sf
ELEVENLABS_API_KEY = os.environ.get("ELEVENLABS_API_KEY", None)
def extract_audio(video_path, output_format="mp3"):
if not video_path:
return None, "No video provided"
output_path = f"extracted_audio_{uuid.uuid4().hex[:8]}.{output_format}"
try:
video = VideoFileClip(video_path)
video.audio.write_audiofile(output_path, logger=None)
video.close()
return output_path, f"Audio extracted successfully"
except Exception as e:
return None, f"Error extracting audio: {str(e)}"
def save_transcription(transcription):
if "error" in transcription:
return None, transcription["error"]
transcript_filename = f"transcription_{uuid.uuid4().hex[:8]}.txt"
try:
with open(transcript_filename, "w", encoding="utf-8") as f:
f.write(transcription.get('text', 'No text found'))
return transcript_filename, "Transcription saved as text file"
except Exception as e:
return None, f"Error saving transcription: {str(e)}"
def process_video_file(video_file, output_format, api_key, model_id):
if video_file is None:
return None, "Please upload a video file", None, "No video provided"
audio_path, message = extract_audio(video_file, output_format)
if audio_path and os.path.exists(audio_path):
transcription = transcribe_audio(audio_path, api_key, model_id)
transcript_file, transcript_message = save_transcription(transcription)
return audio_path, message, transcript_file, transcript_message
else:
return None, message, None, "Audio extraction failed, cannot transcribe"
def process_video_url(video_url, output_format, api_key, model_id):
if not video_url.strip():
return None, "Please enter a video URL", None, "No URL provided"
video_path, error = download_video_from_url(video_url)
if error:
return None, error, None, "Video download failed, cannot transcribe"
audio_path, message = extract_audio(video_path, output_format)
if video_path and os.path.exists(video_path):
try:
os.remove(video_path)
except:
pass
if audio_path and os.path.exists(audio_path):
transcription = transcribe_audio(audio_path, api_key, model_id)
transcript_file, transcript_message = save_transcription(transcription)
return audio_path, message, transcript_file, transcript_message
else:
return None, message, None, "Audio extraction failed, cannot transcribe"
def transcribe_audio(audio_path, api_key, model_id="scribe_v1"):
start_time = time.time()
if not api_key:
return {"error": "Please provide an API key"}
url = "https://api.elevenlabs.io/v1/speech-to-text"
headers = {
"xi-api-key": api_key,
"Content-Type": "multipart/form-data" # Explicitly set content type
}
try:
with open(audio_path, "rb") as f:
files = {
"file": (os.path.basename(audio_path), f, "audio/mpeg"),
"model_id": (None, model_id)
}
response = requests.post(
url,
headers=headers,
files=files
)
# More detailed error handling
if response.status_code != 200:
return {
"error": f"API request failed with status {response.status_code}",
"response_text": response.text
}
result = response.json()
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError:
return {"error": "Failed to parse API response"}
except Exception as e:
return {"error": f"Unexpected error: {str(e)}"}
end_time = time.time()
processing_time = end_time - start_time
# File size calculation
file_size = os.path.getsize(audio_path) / (1024 * 1024)
# Audio duration calculation with fallback
try:
# Attempt to get audio duration using soundfile
audio_data, sample_rate = sf.read(audio_path)
audio_duration = len(audio_data) / sample_rate
except ImportError:
try:
import librosa
audio_duration = librosa.get_duration(filename=audio_path)
except:
audio_duration = 0
# Prepare comprehensive return dictionary
return {
"service": "ElevenLabs Scribe",
"text": result.get('text', ''),
"processing_time": processing_time,
"file_size_mb": round(file_size, 2),
"audio_duration": round(audio_duration, 2),
"real_time_factor": round(processing_time / audio_duration, 2) if audio_duration > 0 else None,
"processing_speed": round(audio_duration / processing_time, 2) if processing_time > 0 else None,
"raw_response": result
}
with gr.Blocks(title="Video to Audio to Transcription") as app:
gr.Markdown("# Video => Audio => Transcription")
api_key = gr.Textbox(
placeholder="Enter your ElevenLabs API key",
label="ElevenLabs API Key",
type="password",
value=ELEVENLABS_API_KEY
)
model_id = gr.Dropdown(
choices=["scribe_v1"],
value="scribe_v1",
label="Transcription Model"
)
with gr.Tabs():
with gr.TabItem("Upload Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video")
format_choice_file = gr.Radio(["mp3", "wav"], value="mp3", label="Output Format")
extract_button_file = gr.Button("Extract Audio & Transcribe")
with gr.Column():
audio_output_file = gr.Audio(label="Extracted Audio", type="filepath")
status_output_file = gr.Textbox(label="Audio Extraction Status")
transcript_file_output = gr.File(label="Transcription Text File")
transcript_status_output = gr.Textbox(label="Transcription Status")
extract_button_file.click(
fn=process_video_file,
inputs=[video_input, format_choice_file, api_key, model_id],
outputs=[audio_output_file, status_output_file, transcript_file_output, transcript_status_output]
)
if __name__ == "__main__":
app.launch()