File size: 5,519 Bytes
1b5c40f
 
bfe7fc0
af4d14d
 
bfe7fc0
af4d14d
2cbd666
1b5c40f
af4d14d
1b5c40f
 
af4d14d
1b5c40f
 
 
 
 
 
 
 
 
 
 
 
 
af4d14d
f7df8d8
 
1b5c40f
 
 
 
 
af4d14d
1b5c40f
 
 
f7df8d8
1b5c40f
af4d14d
1b5c40f
 
af4d14d
 
1b5c40f
 
 
 
 
f7df8d8
 
 
 
 
 
 
 
 
af4d14d
f7df8d8
 
 
 
 
 
af4d14d
 
f7df8d8
af4d14d
 
f7df8d8
af4d14d
 
 
 
f7df8d8
 
af4d14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5c40f
af4d14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5c40f
 
af4d14d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import uuid
import time
import json
import requests
import soundfile as sf
import gradio as gr
from moviepy import VideoFileClip

ELEVENLABS_API_KEY = os.environ.get('ELEVENLABS_API_KEY', '')

def extract_audio(video_path, output_format="mp3"):

    if not video_path:
        return None, "No video provided"
    
    output_path = f"extracted_audio_{uuid.uuid4().hex[:8]}.{output_format}"
    
    try:
        video = VideoFileClip(video_path)
        video.audio.write_audiofile(output_path, logger=None)
        video.close()
        return output_path, f"Audio extracted successfully"
    except Exception as e:
        return None, f"Error extracting audio: {str(e)}"

def transcribe_with_scribe(audio_path, api_key, model_id="scribe_v1"):
    start_time = time.time()
    
    if not api_key:
        return {"error": "Please provide an API key"}
    
    url = "https://api.elevenlabs.io/v1/speech-to-text"
    headers = {
        "xi-api-key": api_key
    }
    
    try:
        with open(audio_path, "rb") as f:
            files = {
                "file": f,
                "model_id": (None, model_id)
            }
            response = requests.post(url, headers=headers, files=files)
            response.raise_for_status()
            result = response.json()
    except requests.exceptions.RequestException as e:
        return {"error": f"API request failed: {str(e)}"}
    except json.JSONDecodeError:
        return {"error": "Failed to parse API response"}
    
    end_time = time.time()
    processing_time = end_time - start_time
    
    file_size = os.path.getsize(audio_path) / (1024 * 1024)
    
    try:
        audio_data, sample_rate = sf.read(audio_path)
        audio_duration = len(audio_data) / sample_rate
    except:
        try:
            import librosa
            audio_duration = librosa.get_duration(filename=audio_path)
        except:
            audio_duration = 0
    
    text = result.get('text', '')
    
    return {
        "service": "Scribe",
        "text": text,
        "processing_time": processing_time,
        "file_size_mb": file_size,
        "audio_duration": audio_duration,
        "real_time_factor": processing_time / audio_duration if audio_duration > 0 else None,
        "processing_speed": audio_duration / processing_time if audio_duration > 0 else None,
        "raw_response": result
    }

def save_transcription(transcription):
    if "error" in transcription:
        return None, transcription["error"]
    
    transcript_filename = f"transcription_{uuid.uuid4().hex[:8]}.txt"
    
    try:
        with open(transcript_filename, "w", encoding="utf-8") as f:
            f.write(transcription.get('text', 'No text found'))
        return transcript_filename, "Transcription saved as text file"
    except Exception as e:
        return None, f"Error saving transcription: {str(e)}"

def process_video_file(video_input, output_format, api_key, model_id):

    audio_output, audio_status = extract_audio(video_input, output_format)
    
    if not audio_output:
        return None, audio_status, None, audio_status
    
    transcription = transcribe_with_scribe(audio_output, api_key, model_id)
    
    transcript_file, transcript_status = save_transcription(transcription)
    
    try:
        os.remove(audio_output)
    except Exception:
        pass
    
    return audio_output, audio_status, transcript_file, transcript_status

def create_interface():
    with gr.Blocks(title="Video to Audio to Transcription") as app:
        gr.Markdown("# Video => Audio => Transcription")
        
        with gr.Row():
            api_key = gr.Textbox(
                placeholder="Enter your ElevenLabs API key", 
                label="ElevenLabs API Key", 
                type="password", 
                value=ELEVENLABS_API_KEY
            )
            model_id = gr.Dropdown(
                choices=["scribe_v1"], 
                value="scribe_v1", 
                label="Transcription Model"
            )
        
        with gr.Tabs():
            with gr.TabItem("Upload Video"):
                with gr.Row():
                    with gr.Column():
                        video_input = gr.Video(label="Upload Video")
                        format_choice_file = gr.Radio(
                            ["mp3"], 
                            value="mp3", 
                            label="Output Format"
                        )
                        extract_button_file = gr.Button("Extract Audio & Transcribe")
                    
                    with gr.Column():
                        audio_output_file = gr.Audio(label="Extracted Audio", type="filepath")
                        status_output_file = gr.Textbox(label="Audio Extraction Status")
                        transcript_file_output = gr.File(label="Transcription Text File")
                        transcript_status_output = gr.Textbox(label="Transcription Status")
                
                extract_button_file.click(
                    fn=process_video_file, 
                    inputs=[video_input, format_choice_file, api_key, model_id], 
                    outputs=[
                        audio_output_file, 
                        status_output_file, 
                        transcript_file_output, 
                        transcript_status_output
                    ]
                )
        
        return app

def main():
    app = create_interface()
    app.launch()

if __name__ == "__main__":
    main()