File size: 5,519 Bytes
1b5c40f bfe7fc0 af4d14d bfe7fc0 af4d14d 2cbd666 1b5c40f af4d14d 1b5c40f af4d14d 1b5c40f af4d14d f7df8d8 1b5c40f af4d14d 1b5c40f f7df8d8 1b5c40f af4d14d 1b5c40f af4d14d 1b5c40f f7df8d8 af4d14d f7df8d8 af4d14d f7df8d8 af4d14d f7df8d8 af4d14d f7df8d8 af4d14d 1b5c40f af4d14d 1b5c40f af4d14d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import uuid
import time
import json
import requests
import soundfile as sf
import gradio as gr
from moviepy import VideoFileClip
ELEVENLABS_API_KEY = os.environ.get('ELEVENLABS_API_KEY', '')
def extract_audio(video_path, output_format="mp3"):
if not video_path:
return None, "No video provided"
output_path = f"extracted_audio_{uuid.uuid4().hex[:8]}.{output_format}"
try:
video = VideoFileClip(video_path)
video.audio.write_audiofile(output_path, logger=None)
video.close()
return output_path, f"Audio extracted successfully"
except Exception as e:
return None, f"Error extracting audio: {str(e)}"
def transcribe_with_scribe(audio_path, api_key, model_id="scribe_v1"):
start_time = time.time()
if not api_key:
return {"error": "Please provide an API key"}
url = "https://api.elevenlabs.io/v1/speech-to-text"
headers = {
"xi-api-key": api_key
}
try:
with open(audio_path, "rb") as f:
files = {
"file": f,
"model_id": (None, model_id)
}
response = requests.post(url, headers=headers, files=files)
response.raise_for_status()
result = response.json()
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError:
return {"error": "Failed to parse API response"}
end_time = time.time()
processing_time = end_time - start_time
file_size = os.path.getsize(audio_path) / (1024 * 1024)
try:
audio_data, sample_rate = sf.read(audio_path)
audio_duration = len(audio_data) / sample_rate
except:
try:
import librosa
audio_duration = librosa.get_duration(filename=audio_path)
except:
audio_duration = 0
text = result.get('text', '')
return {
"service": "Scribe",
"text": text,
"processing_time": processing_time,
"file_size_mb": file_size,
"audio_duration": audio_duration,
"real_time_factor": processing_time / audio_duration if audio_duration > 0 else None,
"processing_speed": audio_duration / processing_time if audio_duration > 0 else None,
"raw_response": result
}
def save_transcription(transcription):
if "error" in transcription:
return None, transcription["error"]
transcript_filename = f"transcription_{uuid.uuid4().hex[:8]}.txt"
try:
with open(transcript_filename, "w", encoding="utf-8") as f:
f.write(transcription.get('text', 'No text found'))
return transcript_filename, "Transcription saved as text file"
except Exception as e:
return None, f"Error saving transcription: {str(e)}"
def process_video_file(video_input, output_format, api_key, model_id):
audio_output, audio_status = extract_audio(video_input, output_format)
if not audio_output:
return None, audio_status, None, audio_status
transcription = transcribe_with_scribe(audio_output, api_key, model_id)
transcript_file, transcript_status = save_transcription(transcription)
try:
os.remove(audio_output)
except Exception:
pass
return audio_output, audio_status, transcript_file, transcript_status
def create_interface():
with gr.Blocks(title="Video to Audio to Transcription") as app:
gr.Markdown("# Video => Audio => Transcription")
with gr.Row():
api_key = gr.Textbox(
placeholder="Enter your ElevenLabs API key",
label="ElevenLabs API Key",
type="password",
value=ELEVENLABS_API_KEY
)
model_id = gr.Dropdown(
choices=["scribe_v1"],
value="scribe_v1",
label="Transcription Model"
)
with gr.Tabs():
with gr.TabItem("Upload Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video")
format_choice_file = gr.Radio(
["mp3"],
value="mp3",
label="Output Format"
)
extract_button_file = gr.Button("Extract Audio & Transcribe")
with gr.Column():
audio_output_file = gr.Audio(label="Extracted Audio", type="filepath")
status_output_file = gr.Textbox(label="Audio Extraction Status")
transcript_file_output = gr.File(label="Transcription Text File")
transcript_status_output = gr.Textbox(label="Transcription Status")
extract_button_file.click(
fn=process_video_file,
inputs=[video_input, format_choice_file, api_key, model_id],
outputs=[
audio_output_file,
status_output_file,
transcript_file_output,
transcript_status_output
]
)
return app
def main():
app = create_interface()
app.launch()
if __name__ == "__main__":
main() |