File size: 5,030 Bytes
1b5c40f 993843d 1b5c40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import gradio as gr
import requests
import json
from moviepy import VideoFileClip
import uuid
ELEVENLABS_API_KEY = os.environ.get("ELEVENLABS_API_KEY", None)
def extract_audio(video_path, output_format="mp3"):
if not video_path:
return None, "No video provided"
output_path = f"extracted_audio_{uuid.uuid4().hex[:8]}.{output_format}"
try:
video = VideoFileClip(video_path)
video.audio.write_audiofile(output_path, logger=None)
video.close()
return output_path, f"Audio extracted successfully"
except Exception as e:
return None, f"Error extracting audio: {str(e)}"
def save_transcription(transcription):
if "error" in transcription:
return None, transcription["error"]
transcript_filename = f"transcription_{uuid.uuid4().hex[:8]}.txt"
try:
with open(transcript_filename, "w", encoding="utf-8") as f:
f.write(transcription.get('text', 'No text found'))
return transcript_filename, "Transcription saved as text file"
except Exception as e:
return None, f"Error saving transcription: {str(e)}"
def process_video_file(video_file, output_format, api_key, model_id):
if video_file is None:
return None, "Please upload a video file", None, "No video provided"
audio_path, message = extract_audio(video_file, output_format)
if audio_path and os.path.exists(audio_path):
transcription = transcribe_audio(audio_path, api_key, model_id)
transcript_file, transcript_message = save_transcription(transcription)
return audio_path, message, transcript_file, transcript_message
else:
return None, message, None, "Audio extraction failed, cannot transcribe"
def process_video_url(video_url, output_format, api_key, model_id):
if not video_url.strip():
return None, "Please enter a video URL", None, "No URL provided"
video_path, error = download_video_from_url(video_url)
if error:
return None, error, None, "Video download failed, cannot transcribe"
audio_path, message = extract_audio(video_path, output_format)
if video_path and os.path.exists(video_path):
try:
os.remove(video_path)
except:
pass
if audio_path and os.path.exists(audio_path):
transcription = transcribe_audio(audio_path, api_key, model_id)
transcript_file, transcript_message = save_transcription(transcription)
return audio_path, message, transcript_file, transcript_message
else:
return None, message, None, "Audio extraction failed, cannot transcribe"
def transcribe_audio(audio_file, api_key, model_id="scribe_v1"):
if not api_key:
return {"error": "Please provide an API key"}
url = "https://api.elevenlabs.io/v1/speech-to-text"
headers = {
"xi-api-key": api_key
}
try:
with open(audio_file, "rb") as f:
files = {
"file": f,
"model_id": (None, model_id)
}
response = requests.post(url, headers=headers, files=files)
response.raise_for_status()
result = response.json()
return result
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError:
return {"error": "Failed to parse API response"}
with gr.Blocks(title="Video to Audio to Transcription") as app:
gr.Markdown("# Video => Audio => Transcription")
api_key = gr.Textbox(
placeholder="Enter your ElevenLabs API key",
label="ElevenLabs API Key",
type="password",
value=ELEVENLABS_API_KEY
)
model_id = gr.Dropdown(
choices=["scribe_v1", "eleven_turbo_v2"],
value="scribe_v1",
label="Transcription Model"
)
with gr.Tabs():
with gr.TabItem("Upload Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Upload Video")
format_choice_file = gr.Radio(["mp3", "wav"], value="mp3", label="Output Format")
extract_button_file = gr.Button("Extract Audio & Transcribe")
with gr.Column():
audio_output_file = gr.Audio(label="Extracted Audio", type="filepath")
status_output_file = gr.Textbox(label="Audio Extraction Status")
transcript_file_output = gr.File(label="Transcription Text File")
transcript_status_output = gr.Textbox(label="Transcription Status")
extract_button_file.click(
fn=process_video_file,
inputs=[video_input, format_choice_file, api_key, model_id],
outputs=[audio_output_file, status_output_file, transcript_file_output, transcript_status_output]
)
if __name__ == "__main__":
app.launch() |