Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,44 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
from
|
7 |
-
from openai import OpenAI
|
8 |
-
from tenacity import retry, stop_after_attempt, wait_exponential
|
9 |
-
|
10 |
-
# Load environment variables
|
11 |
-
load_dotenv()
|
12 |
-
|
13 |
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
-
OPENAI_MODEL = "openai/gpt-4.1" # or "gpt-3.5-turbo" based on your preference
|
17 |
|
18 |
|
19 |
# --- Basic Agent Definition ---
|
20 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
21 |
class BasicAgent:
|
22 |
def __init__(self):
|
23 |
-
"
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
-
print("BasicAgent initialized successfully.")
|
30 |
-
|
31 |
-
@retry(
|
32 |
-
stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)
|
33 |
-
)
|
34 |
-
def _get_completion(self, prompt: str) -> str:
|
35 |
-
"""Get completion from OpenAI with retry logic."""
|
36 |
-
try:
|
37 |
-
response = self.client.chat.completions.create(
|
38 |
-
model=OPENAI_MODEL,
|
39 |
-
messages=[
|
40 |
-
{
|
41 |
-
"role": "developer",
|
42 |
-
"content": """
|
43 |
-
You are an expert research assistant that provides precise, accurate answers. Before responding, use this hidden planning phase (which will not be shown to users):
|
44 |
-
|
45 |
-
```
|
46 |
-
<planning>
|
47 |
-
1. Classify the question type:
|
48 |
-
- Arithmetic/mathematical calculation
|
49 |
-
- Factual lookup (dates, codes, definitions)
|
50 |
-
- Complex knowledge (requires synthesis of multiple facts)
|
51 |
-
- Subjective/opinion-based (requires reasoning with caveats)
|
52 |
-
|
53 |
-
2. For each type:
|
54 |
-
- Arithmetic: Calculate step-by-step to ensure accuracy
|
55 |
-
- Factual lookup: Identify the specific data point needed
|
56 |
-
- Complex knowledge: Break down into key components and relationships
|
57 |
-
- Subjective: Note major perspectives and evidence for each
|
58 |
-
|
59 |
-
3. Check for potential ambiguities or misinterpretations
|
60 |
-
4. Formulate the most precise answer possible
|
61 |
-
</planning>
|
62 |
-
```
|
63 |
-
|
64 |
-
## Response Format
|
65 |
-
|
66 |
-
After your planning, provide your answer in this format:
|
67 |
-
|
68 |
-
**Answer:** [Your concise, precise answer]
|
69 |
-
|
70 |
-
For factual questions, include only the exact information requested - no extra text.
|
71 |
-
For complex questions, provide a concise, well-structured response focused on accuracy.
|
72 |
-
|
73 |
-
## Examples
|
74 |
-
|
75 |
-
**Q: What is 493 × 27?**
|
76 |
-
<planning>Arithmetic calculation: 493 × 27 = (493 × 20) + (493 × 7) = 9,860 + 3,451 = 13,311</planning>
|
77 |
-
**Answer:** 13,311
|
78 |
-
|
79 |
-
**Q: Which country has the smallest land area in South America?**
|
80 |
-
<planning>Factual lookup: South American countries by land area. Smallest is Suriname at 63,251 square miles.</planning>
|
81 |
-
**Answer:** Suriname
|
82 |
-
|
83 |
-
**Q: How does atmospheric carbon dioxide affect ocean acidity?**
|
84 |
-
<planning>Complex knowledge question requiring synthesis of chemistry concepts...</planning>
|
85 |
-
**Answer:** Atmospheric CO₂ dissolves in seawater forming carbonic acid (H₂CO₃), which releases hydrogen ions and lowers pH. This process, called ocean acidification, has increased ocean acidity by approximately 30% since the Industrial Revolution.""",
|
86 |
-
},
|
87 |
-
{"role": "user", "content": prompt},
|
88 |
-
],
|
89 |
-
temperature=0.5, # Lower temperature for more consistent outputs
|
90 |
-
# max_tokens=1000,
|
91 |
-
)
|
92 |
-
return response.choices[0].message.content.strip()
|
93 |
-
except Exception as e:
|
94 |
-
print(f"Error in OpenAI API call: {e}")
|
95 |
-
raise
|
96 |
-
|
97 |
-
def _preprocess_question(self, question: str) -> str:
|
98 |
-
"""Preprocess the question to enhance clarity and context."""
|
99 |
-
enhanced_prompt = f"""Please analyze and answer the following question from the GAIA benchmark.
|
100 |
-
Question: {question}
|
101 |
-
|
102 |
-
Provide a clear, specific answer that can be evaluated through exact matching.
|
103 |
-
If the question requires multiple steps, please show your reasoning but ensure the final answer is clearly stated.
|
104 |
-
"""
|
105 |
-
return enhanced_prompt
|
106 |
-
|
107 |
def __call__(self, question: str) -> str:
|
108 |
-
"""Process the question and return an answer."""
|
109 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
# Preprocess the question
|
113 |
-
enhanced_prompt = self._preprocess_question(question)
|
114 |
-
|
115 |
-
# Get completion from OpenAI
|
116 |
-
response = self._get_completion(enhanced_prompt)
|
117 |
-
|
118 |
-
# Extract the final answer
|
119 |
-
# If the response contains multiple lines or explanations,
|
120 |
-
# we'll try to extract just the final answer
|
121 |
-
answer_lines = response.strip().split("\n")
|
122 |
-
final_answer = answer_lines[-1].strip()
|
123 |
-
|
124 |
-
# Log the response for debugging
|
125 |
-
print(f"Agent generated answer: {final_answer[:100]}...")
|
126 |
-
|
127 |
-
return final_answer
|
128 |
-
|
129 |
-
except Exception as e:
|
130 |
-
print(f"Error processing question: {e}")
|
131 |
-
return f"Error: {str(e)}"
|
132 |
-
|
133 |
-
|
134 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
135 |
"""
|
136 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
137 |
and displays the results.
|
138 |
"""
|
139 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
140 |
-
space_id = os.getenv("SPACE_ID")
|
141 |
|
142 |
if profile:
|
143 |
-
username
|
144 |
print(f"User logged in: {username}")
|
145 |
else:
|
146 |
print("User not logged in.")
|
@@ -167,16 +65,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
167 |
response.raise_for_status()
|
168 |
questions_data = response.json()
|
169 |
if not questions_data:
|
170 |
-
|
171 |
-
|
172 |
print(f"Fetched {len(questions_data)} questions.")
|
173 |
except requests.exceptions.RequestException as e:
|
174 |
print(f"Error fetching questions: {e}")
|
175 |
return f"Error fetching questions: {e}", None
|
176 |
except requests.exceptions.JSONDecodeError as e:
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
except Exception as e:
|
181 |
print(f"An unexpected error occurred fetching questions: {e}")
|
182 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -193,36 +91,18 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
193 |
continue
|
194 |
try:
|
195 |
submitted_answer = agent(question_text)
|
196 |
-
answers_payload.append(
|
197 |
-
|
198 |
-
)
|
199 |
-
results_log.append(
|
200 |
-
{
|
201 |
-
"Task ID": task_id,
|
202 |
-
"Question": question_text,
|
203 |
-
"Submitted Answer": submitted_answer,
|
204 |
-
}
|
205 |
-
)
|
206 |
except Exception as e:
|
207 |
-
|
208 |
-
|
209 |
-
{
|
210 |
-
"Task ID": task_id,
|
211 |
-
"Question": question_text,
|
212 |
-
"Submitted Answer": f"AGENT ERROR: {e}",
|
213 |
-
}
|
214 |
-
)
|
215 |
|
216 |
if not answers_payload:
|
217 |
print("Agent did not produce any answers to submit.")
|
218 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
219 |
|
220 |
-
# 4. Prepare Submission
|
221 |
-
submission_data = {
|
222 |
-
"username": username.strip(),
|
223 |
-
"agent_code": agent_code,
|
224 |
-
"answers": answers_payload,
|
225 |
-
}
|
226 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
227 |
print(status_update)
|
228 |
|
@@ -276,11 +156,9 @@ with gr.Blocks() as demo:
|
|
276 |
gr.Markdown(
|
277 |
"""
|
278 |
**Instructions:**
|
279 |
-
|
280 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
281 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
282 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
283 |
-
|
284 |
---
|
285 |
**Disclaimers:**
|
286 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
@@ -292,19 +170,20 @@ with gr.Blocks() as demo:
|
|
292 |
|
293 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
294 |
|
295 |
-
status_output = gr.Textbox(
|
296 |
-
label="Run Status / Submission Result", lines=5, interactive=False
|
297 |
-
)
|
298 |
# Removed max_rows=10 from DataFrame constructor
|
299 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
300 |
|
301 |
-
run_button.click(
|
|
|
|
|
|
|
302 |
|
303 |
if __name__ == "__main__":
|
304 |
-
print("\n" + "-"
|
305 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
306 |
space_host_startup = os.getenv("SPACE_HOST")
|
307 |
-
space_id_startup = os.getenv("SPACE_ID")
|
308 |
|
309 |
if space_host_startup:
|
310 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -312,18 +191,14 @@ if __name__ == "__main__":
|
|
312 |
else:
|
313 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
314 |
|
315 |
-
if space_id_startup:
|
316 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
317 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
318 |
-
print(
|
319 |
-
f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main"
|
320 |
-
)
|
321 |
else:
|
322 |
-
print(
|
323 |
-
"ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
|
324 |
-
)
|
325 |
|
326 |
-
print("-"
|
327 |
|
328 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
329 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# (Keep Constants as is)
|
7 |
# --- Constants ---
|
8 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
9 |
|
10 |
|
11 |
# --- Basic Agent Definition ---
|
12 |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
def __init__(self):
|
15 |
+
print("BasicAgent initialized.")
|
16 |
+
# Initialize the model
|
17 |
+
#model = HfApiModel()
|
18 |
+
model = OpenAIServerModel(model_id="openai/gpt-4.1",api_key=os.environ["API_KEY"],api_base="https://models.github.ai/inference")
|
19 |
+
# Initialize the search tool
|
20 |
+
search_tool = DuckDuckGoSearchTool()
|
21 |
+
# Initialize Agent
|
22 |
+
self.agent = CodeAgent(
|
23 |
+
model = model,
|
24 |
+
tools=[search_tool]
|
25 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def __call__(self, question: str) -> str:
|
|
|
27 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
28 |
+
fixed_answer =self.agent.run(question)
|
29 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
30 |
+
return fixed_answer
|
31 |
|
32 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
"""
|
34 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
35 |
and displays the results.
|
36 |
"""
|
37 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
38 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
39 |
|
40 |
if profile:
|
41 |
+
username= f"{profile.username}"
|
42 |
print(f"User logged in: {username}")
|
43 |
else:
|
44 |
print("User not logged in.")
|
|
|
65 |
response.raise_for_status()
|
66 |
questions_data = response.json()
|
67 |
if not questions_data:
|
68 |
+
print("Fetched questions list is empty.")
|
69 |
+
return "Fetched questions list is empty or invalid format.", None
|
70 |
print(f"Fetched {len(questions_data)} questions.")
|
71 |
except requests.exceptions.RequestException as e:
|
72 |
print(f"Error fetching questions: {e}")
|
73 |
return f"Error fetching questions: {e}", None
|
74 |
except requests.exceptions.JSONDecodeError as e:
|
75 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
76 |
+
print(f"Response text: {response.text[:500]}")
|
77 |
+
return f"Error decoding server response for questions: {e}", None
|
78 |
except Exception as e:
|
79 |
print(f"An unexpected error occurred fetching questions: {e}")
|
80 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
91 |
continue
|
92 |
try:
|
93 |
submitted_answer = agent(question_text)
|
94 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
95 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
except Exception as e:
|
97 |
+
print(f"Error running agent on task {task_id}: {e}")
|
98 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
if not answers_payload:
|
101 |
print("Agent did not produce any answers to submit.")
|
102 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
103 |
|
104 |
+
# 4. Prepare Submission
|
105 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
106 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
107 |
print(status_update)
|
108 |
|
|
|
156 |
gr.Markdown(
|
157 |
"""
|
158 |
**Instructions:**
|
|
|
159 |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
160 |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
161 |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
162 |
---
|
163 |
**Disclaimers:**
|
164 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
|
|
170 |
|
171 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
172 |
|
173 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
|
174 |
# Removed max_rows=10 from DataFrame constructor
|
175 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
176 |
|
177 |
+
run_button.click(
|
178 |
+
fn=run_and_submit_all,
|
179 |
+
outputs=[status_output, results_table]
|
180 |
+
)
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
184 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
185 |
space_host_startup = os.getenv("SPACE_HOST")
|
186 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
187 |
|
188 |
if space_host_startup:
|
189 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
191 |
else:
|
192 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
193 |
|
194 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
195 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
196 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
197 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
|
|
|
|
198 |
else:
|
199 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
|
|
|
|
200 |
|
201 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
202 |
|
203 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
204 |
+
demo.launch(debug=True, share=False)
|