File size: 24,569 Bytes
0f51c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
import os
import tempfile
import time
import re
import json
from typing import List, Optional, Dict, Any
from urllib.parse import urlparse
import requests
import yt_dlp
from bs4 import BeautifulSoup
from difflib import SequenceMatcher

from langchain_core.messages import HumanMessage, SystemMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper, WikipediaAPIWrapper
from langchain.agents import Tool, AgentExecutor, ConversationalAgent, initialize_agent, AgentType
from langchain.memory import ConversationBufferMemory
from langchain.prompts import MessagesPlaceholder
from langchain.tools import BaseTool, Tool, tool
from google.generativeai.types import HarmCategory, HarmBlockThreshold
from PIL import Image
import google.generativeai as genai
from pydantic import Field

from smolagents import WikipediaSearchTool

class SmolagentToolWrapper(BaseTool):
    """Wrapper for smolagents tools to make them compatible with LangChain."""
    
    wrapped_tool: object = Field(description="The wrapped smolagents tool")
    
    def __init__(self, tool):
        """Initialize the wrapper with a smolagents tool."""
        super().__init__(
            name=tool.name,
            description=tool.description,
            return_direct=False,
            wrapped_tool=tool
        )

    def _run(self, query: str) -> str:
        """Use the wrapped tool to execute the query."""
        try:
            # For WikipediaSearchTool
            if hasattr(self.wrapped_tool, 'search'):
                return self.wrapped_tool.search(query)
            # For DuckDuckGoSearchTool and others
            return self.wrapped_tool(query)
        except Exception as e:
            return f"Error using tool: {str(e)}"
    
    def _arun(self, query: str) -> str:
        """Async version - just calls sync version since smolagents tools don't support async."""
        return self._run(query)

class WebSearchTool:
    def __init__(self):
        self.last_request_time = 0
        self.min_request_interval = 2.0  # Minimum time between requests in seconds
        self.max_retries = 10

    def search(self, query: str, domain: Optional[str] = None) -> str:
        """Perform web search with rate limiting and retries."""
        for attempt in range(self.max_retries):
            # Implement rate limiting
            current_time = time.time()
            time_since_last = current_time - self.last_request_time
            if time_since_last < self.min_request_interval:
                time.sleep(self.min_request_interval - time_since_last)
            
            try:
                # Make the search request
                results = self._do_search(query, domain)
                self.last_request_time = time.time()
                return results
            except Exception as e:
                if "202 Ratelimit" in str(e):
                    if attempt < self.max_retries - 1:
                        # Exponential backoff
                        wait_time = (2 ** attempt) * self.min_request_interval
                        time.sleep(wait_time)
                        continue
                return f"Search failed after {self.max_retries} attempts: {str(e)}"
        
        return "Search failed due to rate limiting"

    def _do_search(self, query: str, domain: Optional[str] = None) -> str:
        """Perform the actual search request."""
        try:
            # Construct search URL
            base_url = "https://html.duckduckgo.com/html"
            params = {"q": query}
            if domain:
                params["q"] += f" site:{domain}"

            # Make request with increased timeout
            response = requests.get(base_url, params=params, timeout=10)
            response.raise_for_status()

            if response.status_code == 202:
                raise Exception("202 Ratelimit")

            # Extract search results
            results = []
            soup = BeautifulSoup(response.text, 'html.parser')
            for result in soup.find_all('div', {'class': 'result'}):
                title = result.find('a', {'class': 'result__a'})
                snippet = result.find('a', {'class': 'result__snippet'})
                if title and snippet:
                    results.append({
                        'title': title.get_text(),
                        'snippet': snippet.get_text(),
                        'url': title.get('href')
                    })

            # Format results
            formatted_results = []
            for r in results[:10]:  # Limit to top 5 results
                formatted_results.append(f"[{r['title']}]({r['url']})\n{r['snippet']}\n")

            return "## Search Results\n\n" + "\n".join(formatted_results)

        except requests.RequestException as e:
            raise Exception(f"Search request failed: {str(e)}")

def save_and_read_file(content: str, filename: Optional[str] = None) -> str:
    """

    Save content to a temporary file and return the path.

    Useful for processing files from the GAIA API.

    

    Args:

        content: The content to save to the file

        filename: Optional filename, will generate a random name if not provided

        

    Returns:

        Path to the saved file

    """
    temp_dir = tempfile.gettempdir()
    if filename is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False)
        filepath = temp_file.name
    else:
        filepath = os.path.join(temp_dir, filename)
    
    # Write content to the file
    with open(filepath, 'w') as f:
        f.write(content)
    
    return f"File saved to {filepath}. You can read this file to process its contents."


def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """

    Download a file from a URL and save it to a temporary location.

    

    Args:

        url: The URL to download from

        filename: Optional filename, will generate one based on URL if not provided

        

    Returns:

        Path to the downloaded file

    """
    try:
        # Parse URL to get filename if not provided
        if not filename:
            path = urlparse(url).path
            filename = os.path.basename(path)
            if not filename:
                # Generate a random name if we couldn't extract one
                import uuid
                filename = f"downloaded_{uuid.uuid4().hex[:8]}"
        
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        filepath = os.path.join(temp_dir, filename)
        
        # Download the file
        response = requests.get(url, stream=True)
        response.raise_for_status()
        
        # Save the file
        with open(filepath, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        return f"File downloaded to {filepath}. You can now process this file."
    except Exception as e:
        return f"Error downloading file: {str(e)}"


def extract_text_from_image(image_path: str) -> str:
    """

    Extract text from an image using pytesseract (if available).

    

    Args:

        image_path: Path to the image file

        

    Returns:

        Extracted text or error message

    """
    try:
        # Try to import pytesseract
        import pytesseract
        from PIL import Image
        
        # Open the image
        image = Image.open(image_path)
        
        # Extract text
        text = pytesseract.image_to_string(image)
        
        return f"Extracted text from image:\n\n{text}"
    except ImportError:
        return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
    except Exception as e:
        return f"Error extracting text from image: {str(e)}"


def analyze_csv_file(file_path: str, query: str) -> str:
    """

    Analyze a CSV file using pandas and answer a question about it.

    

    Args:

        file_path: Path to the CSV file

        query: Question about the data

        

    Returns:

        Analysis result or error message

    """
    try:
        import pandas as pd
        
        # Read the CSV file
        df = pd.read_csv(file_path)
        
        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas is not installed. Please install it with 'pip install pandas'."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """

    Analyze an Excel file using pandas and answer a question about it.

    

    Args:

        file_path: Path to the Excel file

        query: Question about the data

        

    Returns:

        Analysis result or error message

    """
    try:
        import pandas as pd
        
        # Read the Excel file
        df = pd.read_excel(file_path)
        
        # Run various analyses based on the query
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"

class GeminiAgent:
    def __init__(self, api_key: str, model_name: str = "gemini-2.0-flash"):
        # Suppress warnings
        import warnings
        warnings.filterwarnings("ignore", category=UserWarning)
        warnings.filterwarnings("ignore", category=DeprecationWarning)
        warnings.filterwarnings("ignore", message=".*will be deprecated.*")
        warnings.filterwarnings("ignore", "LangChain.*")
        
        self.api_key = api_key
        self.model_name = model_name
        
        # Configure Gemini
        genai.configure(api_key=api_key)
        
        # Initialize the LLM
        self.llm = self._setup_llm()
        
        # Setup tools
        self.tools = [
            SmolagentToolWrapper(WikipediaSearchTool()),
            Tool(
                name="analyze_video",
                func=self._analyze_video,
                description="Analyze YouTube video content directly"
            ),
            Tool(
                name="analyze_image",
                func=self._analyze_image,
                description="Analyze image content"
            ),
            Tool(
                name="analyze_table",
                func=self._analyze_table,
                description="Analyze table or matrix data"
            ),
            Tool(
                name="analyze_list",
                func=self._analyze_list,
                description="Analyze and categorize list items"
            ),
            Tool(
                name="web_search",
                func=self._web_search,
                description="Search the web for information"
            )
        ]
        
        # Setup memory
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True
        )
        
        # Initialize agent
        self.agent = self._setup_agent()
       

    def run(self, query: str) -> str:
        """Run the agent on a query with incremental retries."""
        max_retries = 3
        base_sleep = 1  # Start with 1 second sleep
        
        for attempt in range(max_retries):
            try:

                # If no match found in answer bank, use the agent
                response = self.agent.run(query)
                return response

            except Exception as e:
                sleep_time = base_sleep * (attempt + 1)  # Incremental sleep: 1s, 2s, 3s
                if attempt < max_retries - 1:
                    print(f"Attempt {attempt + 1} failed. Retrying in {sleep_time} seconds...")
                    time.sleep(sleep_time)
                    continue
                return f"Error processing query after {max_retries} attempts: {str(e)}"

        print("Agent processed all queries!")

    def _clean_response(self, response: str) -> str:
        """Clean up the response from the agent."""
        # Remove any tool invocation artifacts
        cleaned = re.sub(r'> Entering new AgentExecutor chain...|> Finished chain.', '', response)
        cleaned = re.sub(r'Thought:.*?Action:.*?Action Input:.*?Observation:.*?\n', '', cleaned, flags=re.DOTALL)
        return cleaned.strip()

    def run_interactive(self):
        print("AI Assistant Ready! (Type 'exit' to quit)")
        
        while True:
            query = input("You: ").strip()
            if query.lower() == 'exit':
                print("Goodbye!")
                break
            
            print("Assistant:", self.run(query))

    def _web_search(self, query: str, domain: Optional[str] = None) -> str:
        """Perform web search with rate limiting and retries."""
        try:
            # Use DuckDuckGo API wrapper for more reliable results
            search = DuckDuckGoSearchAPIWrapper(max_results=5)
            results = search.run(f"{query} {f'site:{domain}' if domain else ''}")
            
            if not results or results.strip() == "":
                return "No search results found."
                
            return results

        except Exception as e:
            return f"Search error: {str(e)}"

    def _analyze_video(self, url: str) -> str:
        """Analyze video content using Gemini's video understanding capabilities."""
        try:
            # Validate URL
            parsed_url = urlparse(url)
            if not all([parsed_url.scheme, parsed_url.netloc]):
                return "Please provide a valid video URL with http:// or https:// prefix."
            
            # Check if it's a YouTube URL
            if 'youtube.com' not in url and 'youtu.be' not in url:
                return "Only YouTube videos are supported at this time."

            try:
                # Configure yt-dlp with minimal extraction
                ydl_opts = {
                    'quiet': True,
                    'no_warnings': True,
                    'extract_flat': True,
                    'no_playlist': True,
                    'youtube_include_dash_manifest': False
                }

                with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                    try:
                        # Try basic info extraction
                        info = ydl.extract_info(url, download=False, process=False)
                        if not info:
                            return "Could not extract video information."

                        title = info.get('title', 'Unknown')
                        description = info.get('description', '')
                        
                        # Create a detailed prompt with available metadata
                        prompt = f"""Please analyze this YouTube video:

Title: {title}

URL: {url}

Description: {description}



Please provide a detailed analysis focusing on:

1. Main topic and key points from the title and description

2. Expected visual elements and scenes

3. Overall message or purpose

4. Target audience"""

                        # Use the LLM with proper message format
                        messages = [HumanMessage(content=prompt)]
                        response = self.llm.invoke(messages)
                        return response.content if hasattr(response, 'content') else str(response)

                    except Exception as e:
                        if 'Sign in to confirm' in str(e):
                            return "This video requires age verification or sign-in. Please provide a different video URL."
                        return f"Error accessing video: {str(e)}"

            except Exception as e:
                return f"Error extracting video info: {str(e)}"

        except Exception as e:
            return f"Error analyzing video: {str(e)}"

    def _analyze_table(self, table_data: str) -> str:
        """Analyze table or matrix data."""
        try:
            if not table_data or not isinstance(table_data, str):
                return "Please provide valid table data for analysis."

            prompt = f"""Please analyze this table:



{table_data}



Provide a detailed analysis including:

1. Structure and format

2. Key patterns or relationships

3. Notable findings

4. Any mathematical properties (if applicable)"""

            messages = [HumanMessage(content=prompt)]
            response = self.llm.invoke(messages)
            return response.content if hasattr(response, 'content') else str(response)

        except Exception as e:
            return f"Error analyzing table: {str(e)}"

    def _analyze_image(self, image_data: str) -> str:
        """Analyze image content."""
        try:
            if not image_data or not isinstance(image_data, str):
                return "Please provide a valid image for analysis."

            prompt = f"""Please analyze this image:



{image_data}



Focus on:

1. Visual elements and objects

2. Colors and composition

3. Text or numbers (if present)

4. Overall context and meaning"""

            messages = [HumanMessage(content=prompt)]
            response = self.llm.invoke(messages)
            return response.content if hasattr(response, 'content') else str(response)

        except Exception as e:
            return f"Error analyzing image: {str(e)}"

    def _analyze_list(self, list_data: str) -> str:
        """Analyze and categorize list items."""
        if not list_data:
            return "No list data provided."
        try:
            items = [x.strip() for x in list_data.split(',')]
            if not items:
                return "Please provide a comma-separated list of items."
            # Add list analysis logic here
            return "Please provide the list items for analysis."
        except Exception as e:
            return f"Error analyzing list: {str(e)}"

    def _setup_llm(self):
        """Set up the language model."""
        # Set up model with video capabilities
        generation_config = {
            "temperature": 0.0,
            "max_output_tokens": 2000,
            "candidate_count": 1,
        }
        
        safety_settings = {
            HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
            HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
            HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
            HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
        }
        
        return ChatGoogleGenerativeAI(
            model="gemini-2.0-flash",
            google_api_key=self.api_key,
            temperature=0,
            max_output_tokens=2000,
            generation_config=generation_config,
            safety_settings=safety_settings,
            system_message=SystemMessage(content=(
                "You are a precise AI assistant that helps users find information and analyze content. "
                "You can directly understand and analyze YouTube videos, images, and other content. "
                "When analyzing videos, focus on relevant details like dialogue, text, and key visual elements. "
                "For lists, tables, and structured data, ensure proper formatting and organization. "
                "If you need additional context, clearly explain what is needed."
            ))
        )
        
    def _setup_agent(self) -> AgentExecutor:
        """Set up the agent with tools and system message."""
        
        # Define the system message template
        PREFIX = """You are a helpful AI assistant that can use various tools to answer questions and analyze content. You have access to tools for web search, Wikipedia lookup, and multimedia analysis.



TOOLS:

------

You have access to the following tools:"""

        FORMAT_INSTRUCTIONS = """To use a tool, use the following format:



Thought: Do I need to use a tool? Yes

Action: the action to take, should be one of [{tool_names}]

Action Input: the input to the action

Observation: the result of the action



When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:



Thought: Do I need to use a tool? No

Final Answer: [your response here]



Begin! Remember to ALWAYS include 'Thought:', 'Action:', 'Action Input:', and 'Final Answer:' in your responses."""

        SUFFIX = """Previous conversation history:

{chat_history}



New question: {input}

{agent_scratchpad}"""

        # Create the base agent
        agent = ConversationalAgent.from_llm_and_tools(
            llm=self.llm,
            tools=self.tools,
            prefix=PREFIX,
            format_instructions=FORMAT_INSTRUCTIONS,
            suffix=SUFFIX,
            input_variables=["input", "chat_history", "agent_scratchpad", "tool_names"],
            handle_parsing_errors=True
        )

        # Initialize agent executor with custom output handling
        return AgentExecutor.from_agent_and_tools(
            agent=agent,
            tools=self.tools,
            memory=self.memory,
            max_iterations=5,
            verbose=True,
            handle_parsing_errors=True,
            return_only_outputs=True  # This ensures we only get the final output
        )

@tool
def analyze_csv_file(file_path: str, query: str) -> str:
    """

    Analyze a CSV file using pandas and answer a question about it.

    

    Args:

        file_path: Path to the CSV file

        query: Question about the data

        

    Returns:

        Analysis result or error message

    """
    try:
        import pandas as pd
        
        # Read the CSV file
        df = pd.read_csv(file_path)
        
        # Run various analyses based on the query
        result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas is not installed. Please install it with 'pip install pandas'."
    except Exception as e:
        return f"Error analyzing CSV file: {str(e)}"

@tool
def analyze_excel_file(file_path: str, query: str) -> str:
    """

    Analyze an Excel file using pandas and answer a question about it.

    

    Args:

        file_path: Path to the Excel file

        query: Question about the data

        

    Returns:

        Analysis result or error message

    """
    try:
        import pandas as pd
        
        # Read the Excel file
        df = pd.read_excel(file_path)
        
        # Run various analyses based on the query
        result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
        result += f"Columns: {', '.join(df.columns)}\n\n"
        
        # Add summary statistics
        result += "Summary statistics:\n"
        result += str(df.describe())
        
        return result
    except ImportError:
        return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
    except Exception as e:
        return f"Error analyzing Excel file: {str(e)}"