File size: 13,617 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
75cbcb0
 
 
2d68c25
 
 
 
 
 
10e9b7d
d59f015
e80aab9
3db6293
75cbcb0
 
 
2d68c25
e80aab9
31243f4
d59f015
31243f4
 
2d68c25
 
a21b613
75cbcb0
2d68c25
 
75cbcb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d68c25
 
 
75cbcb0
2d68c25
 
 
 
75cbcb0
 
2d68c25
 
 
 
 
 
 
75cbcb0
 
 
 
 
 
 
 
 
 
 
 
 
2d68c25
75cbcb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d68c25
31243f4
2d68c25
31243f4
4021bf3
2d68c25
75cbcb0
 
 
2d68c25
75cbcb0
 
 
2d68c25
75cbcb0
 
2d68c25
75cbcb0
2d68c25
 
 
 
 
 
 
31243f4
 
 
 
7d65c66
2d68c25
3c4371f
7e4a06b
2d68c25
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
b177367
31243f4
 
 
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
2d68c25
 
31243f4
e80aab9
31243f4
 
3c4371f
2d68c25
 
 
7d65c66
31243f4
 
e80aab9
b177367
7d65c66
 
3c4371f
31243f4
 
 
 
 
 
 
7d65c66
2d68c25
 
 
 
 
 
 
 
 
 
31243f4
2d68c25
 
 
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
2d68c25
 
 
 
 
 
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
2d68c25
 
 
7d65c66
 
e80aab9
2d68c25
e80aab9
 
2d68c25
7d65c66
3c4371f
2d68c25
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
2d68c25
7d65c66
 
2d68c25
 
 
7d65c66
2d68c25
 
 
7d65c66
2d68c25
3c4371f
31243f4
2d68c25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import re
from typing import Dict, Any
from dotenv import load_dotenv
from openai import OpenAI
from tenacity import retry, stop_after_attempt, wait_exponential

# Load environment variables
load_dotenv()

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
OPENAI_MODEL = (
    "gpt-4-turbo-preview"  # Using OpenAI's latest model for better performance
)


# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        """Initialize the agent with OpenAI client and setup."""
        print("BasicAgent initializing...")
        self.client = OpenAI(api_key="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",base_url="https://models.github.ai/inference")
        self.question_history: Dict[str, Any] = {}  # Store question context
        print("BasicAgent initialized successfully.")

    def _format_answer(self, raw_answer: str) -> str:
        """Format the answer to improve exact matching success."""
        # Remove any explanations or reasoning
        if "Answer:" in raw_answer:
            answer = raw_answer.split("Answer:")[-1].strip()
        elif "Final answer:" in raw_answer:
            answer = raw_answer.split("Final answer:")[-1].strip()
        else:
            answer = raw_answer.strip()

        # Clean up formatting
        answer = re.sub(
            r"\s+", " ", answer
        )  # Replace multiple spaces with single space
        answer = answer.strip("\"'")  # Remove quotes
        answer = answer.strip(".")  # Remove trailing periods

        return answer.strip()

    @retry(
        stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10)
    )
    def _get_completion(self, messages: list) -> str:
        """Get completion from OpenAI with retry logic."""
        try:
            response = self.client.chat.completions.create(
                model=OPENAI_MODEL,
                messages=messages,
                temperature=0.1,  # Lower temperature for more consistent outputs
                max_tokens=1000,
            )
            return response.choices[0].message.content.strip()
        except Exception as e:
            print(f"Error in OpenAI API call: {e}")
            raise

    def _analyze_question(self, question: str) -> dict:
        """Analyze the question to determine its type and required approach."""
        system_msg = """You are an expert at analyzing questions. For the given question:
1. Identify the question type (e.g., factual, calculation, reasoning)
2. Identify key entities and concepts
3. Determine if external knowledge is needed
4. Suggest the best approach to answer it
Provide your analysis in JSON format."""

        messages = [
            {"role": "system", "content": system_msg},
            {"role": "user", "content": f"Analyze this question: {question}"},
        ]

        try:
            analysis = self._get_completion(messages)
            return json.loads(analysis)
        except:
            return {"type": "unknown", "approach": "direct"}

    def _get_answer(self, question: str, analysis: dict) -> str:
        """Get the answer based on question analysis."""
        system_prompt = f"""You are an AI assistant specialized in answering GAIA benchmark questions.
Your task is to provide EXACT, PRECISE answers that can be matched against a ground truth.

Guidelines:
1. Provide ONLY the final answer, no explanations
2. Be extremely precise and consistent in formatting
3. For numerical answers, use digits (e.g., "42" not "forty-two")
4. For lists, use comma-separated values without spaces after commas
5. For yes/no questions, answer only with "Yes" or "No"
6. Remove any punctuation from the end of your answer
7. Keep your answer as concise as possible while being complete

Question type: {analysis.get('type', 'unknown')}
Approach: {analysis.get('approach', 'direct')}

Remember: Your answer will be compared EXACTLY with the ground truth. Format matters!"""

        messages = [
            {"role": "system", "content": system_prompt},
            {"role": "user", "content": question},
        ]

        raw_answer = self._get_completion(messages)
        return self._format_answer(raw_answer)

    def __call__(self, question: str) -> str:
        """Process the question and return an answer."""
        print(f"Agent received question (first 50 chars): {question[:50]}...")

        try:
            # Analyze the question
            analysis = self._analyze_question(question)
            print(f"Question analysis: {json.dumps(analysis, indent=2)}")

            # Get and format the answer
            answer = self._get_answer(question, analysis)
            print(f"Generated answer: {answer}")

            # Store question context
            self.question_history[question] = {"analysis": analysis, "answer": answer}

            return answer

        except Exception as e:
            print(f"Error processing question: {e}")
            return f"Error: {str(e)}"


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")  # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co./spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append(
                {"task_id": task_id, "submitted_answer": submitted_answer}
            )
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": submitted_answer,
                }
            )
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append(
                {
                    "Task ID": task_id,
                    "Question": question_text,
                    "Submitted Answer": f"AGENT ERROR: {e}",
                }
            )

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload,
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(
        label="Run Status / Submission Result", lines=5, interactive=False
    )
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("\n" + "-" * 30 + " App Starting " + "-" * 30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")  # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:  # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co./spaces/{space_id_startup}")
        print(
            f"   Repo Tree URL: https://huggingface.co./spaces/{space_id_startup}/tree/main"
        )
    else:
        print(
            "ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined."
        )

    print("-" * (60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)