Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,33 @@
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import streamlit as st
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
11 |
-
{"role": "user", "content": "Do you have mayonnaise recipes?"}
|
12 |
-
]
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
model.to(device)
|
18 |
-
|
19 |
-
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
20 |
-
decoded = tokenizer.batch_decode(generated_ids)
|
21 |
-
st.write(decoded[0])
|
|
|
1 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import streamlit as st
|
3 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
4 |
+
import torch
|
5 |
+
if torch.cuda.is_available():
|
6 |
+
device = torch.device("cuda")
|
7 |
+
else:
|
8 |
+
device = "cpu"
|
9 |
+
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("salesken/content_generation_from_phrases")
|
12 |
+
model = AutoModelWithLMHead.from_pretrained("salesken/content_generation_from_phrases").to(device)
|
13 |
|
|
|
|
|
14 |
|
15 |
+
input_query=["data science beginner"]
|
16 |
+
query = "<|startoftext|> " + input_query[0] + " ~~"
|
|
|
|
|
|
|
17 |
|
18 |
+
input_ids = tokenizer.encode(query.lower(), return_tensors='pt').to(device)
|
19 |
+
sample_outputs = model.generate(input_ids,
|
20 |
+
do_sample=True,
|
21 |
+
num_beams=1,
|
22 |
+
max_length=256,
|
23 |
+
temperature=0.9,
|
24 |
+
top_k = 30,
|
25 |
+
num_return_sequences=100)
|
26 |
+
content = []
|
27 |
+
for i in range(len(sample_outputs)):
|
28 |
+
r = tokenizer.decode(sample_outputs[i], skip_special_tokens=True).split('||')[0]
|
29 |
+
r = r.split(' ~~ ')[1]
|
30 |
+
if r not in content:
|
31 |
+
content.append(r)
|
32 |
|
33 |
+
st.write(content)
|
|
|
|
|
|
|
|
|
|