# V04 import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import requests def get_hfhub_models(): """Récupère la liste des modèles disponibles sur Hugging Face Hub""" response = requests.get("https://huggingface.co./api/models") if response.status_code == 200: models = [model['modelId'] for model in response.json()['models']] return models else: raise Exception(f"Erreur lors de la récupération des modèles : {response.status_code}") def load_model(model_name): """Charge le modèle et le tokenizer""" model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) return model, tokenizer def generate_text(model, tokenizer, input_text, max_length, temperature): """Génère du texte en utilisant le modèle""" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_length=max_length, temperature=temperature) return tokenizer.decode(output[0], skip_special_tokens=True) def main(input_text, max_length, temperature, model_name): """Fonction principale pour générer le texte""" model, tokenizer = load_model(model_name) generated_text = generate_text(model, tokenizer, input_text, max_length, temperature) return generated_text demo = gr.Blocks() with demo: gr.Markdown("# Modèle de Langage") with gr.Row(): input_text = gr.Textbox(label="Texte d'entrée") with gr.Row(): max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200) temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7) model_name_dropdown = gr.Dropdown(choices=get_hfhub_models(), label="Sélectionnez un modèle", interactive=True) with gr.Row(): submit_button = gr.Button("Soumettre") output_text = gr.Textbox(label="Texte généré") submit_button.click( main, inputs=[input_text, max_length_slider, temperature_slider, model_name_dropdown], outputs=output_text, queue=False ) if __name__ == "__main__": demo.launch()