Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# V04
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
|
7 |
+
def get_hfhub_models():
|
8 |
+
"""Récupère la liste des modèles disponibles sur Hugging Face Hub"""
|
9 |
+
response = requests.get("https://huggingface.co/api/models")
|
10 |
+
if response.status_code == 200:
|
11 |
+
models = [model['id'] for model in response.json()['models']]
|
12 |
+
return models
|
13 |
+
else:
|
14 |
+
raise Exception(f"Erreur lors de la récupération des modèles : {response.status_code}")
|
15 |
+
|
16 |
+
def load_model(model_name):
|
17 |
+
"""Charge le modèle et le tokenizer"""
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
20 |
+
return model, tokenizer
|
21 |
+
|
22 |
+
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
23 |
+
"""Génère du texte en utilisant le modèle"""
|
24 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
25 |
+
output = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
26 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
def main(input_text, max_length, temperature, model_name):
|
29 |
+
"""Fonction principale pour générer le texte"""
|
30 |
+
model, tokenizer = load_model(model_name)
|
31 |
+
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
32 |
+
return generated_text
|
33 |
+
|
34 |
+
demo = gr.Blocks()
|
35 |
+
|
36 |
+
with demo:
|
37 |
+
gr.Markdown("# Modèle de Langage")
|
38 |
+
|
39 |
+
with gr.Row():
|
40 |
+
input_text = gr.Textbox(label="Texte d'entrée")
|
41 |
+
with gr.Row():
|
42 |
+
max_length_slider = gr.Slider(50, 500, label="Longueur maximale", value=200)
|
43 |
+
temperature_slider = gr.Slider(0.1, 1.0, label="Température", value=0.7)
|
44 |
+
model_name_dropdown = gr.Dropdown(choices=get_hfhub_models(), label="Sélectionnez un modèle")
|
45 |
+
with gr.Row():
|
46 |
+
submit_button = gr.Button("Soumettre")
|
47 |
+
|
48 |
+
output_text = gr.Textbox(label="Texte généré")
|
49 |
+
|
50 |
+
submit_button.click(
|
51 |
+
main,
|
52 |
+
inputs=[input_text, max_length_slider, temperature_slider, model_name_dropdown],
|
53 |
+
outputs=output_text,
|
54 |
+
queue=False
|
55 |
+
)
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
demo.launch()
|