Spaces:
Running
Running
commit
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
-
from model_handler import ModelHandler
|
5 |
-
from data_handler import unified_exam_result_table, mmlu_result_table, unified_exam_chart, mmlu_chart
|
6 |
|
7 |
global_unified_exam_df = None
|
8 |
global_mmlu_df = None
|
@@ -96,8 +96,17 @@ def main():
|
|
96 |
]
|
97 |
}
|
98 |
```
|
99 |
-
3. **
|
100 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
- Click on the "Refresh Data" button in this app, and you will see your model's results.
|
102 |
"""
|
103 |
)
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
+
from data.model_handler import ModelHandler
|
5 |
+
from data.data_handler import unified_exam_result_table, mmlu_result_table, unified_exam_chart, mmlu_chart
|
6 |
|
7 |
global_unified_exam_df = None
|
8 |
global_mmlu_df = None
|
|
|
96 |
]
|
97 |
}
|
98 |
```
|
99 |
+
3. **Important Notes**:
|
100 |
+
- For **`mmlu_results`**:
|
101 |
+
- The following categories must be included in the `mmlu_results` for the model to be considered valid:
|
102 |
+
- "Biology", "Business", "Chemistry", "Computer Science", "Economics", "Engineering", "Health", "History", "Law", "Math", "Other", "Philosophy", "Physics", "Psychology", "Average"
|
103 |
+
- If any of these categories are missing, the model will not be added to the evaluation.
|
104 |
+
- For **`unified_exam_results`**:
|
105 |
+
- The following categories must be included in the `unified_exam_results` for the model to be considered valid:
|
106 |
+
- "Average", "Armenian language and literature", "Armenian history", "Mathematics"
|
107 |
+
- If any of these categories are missing, the model will not be added to the evaluation.
|
108 |
+
4. **Submit your model**:
|
109 |
+
- Add the `Arm-LLM-Bench` tag and the `result.json` file to your model card.
|
110 |
- Click on the "Refresh Data" button in this app, and you will see your model's results.
|
111 |
"""
|
112 |
)
|
data_handler.py β data/data_handler.py
RENAMED
@@ -1,12 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
-
from model_handler import ModelHandler
|
5 |
|
6 |
def unified_exam_result_table(unified_exam_df):
|
7 |
df = unified_exam_df.copy()
|
8 |
-
numeric_columns = df.select_dtypes(include=["number"])
|
9 |
-
df["Average"] = numeric_columns.mean(axis=1)
|
10 |
df = df.sort_values(by='Average', ascending=False).reset_index(drop=True)
|
11 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
12 |
cols = df.columns.tolist()
|
@@ -18,8 +16,6 @@ def unified_exam_result_table(unified_exam_df):
|
|
18 |
|
19 |
def mmlu_result_table(mmlu_df):
|
20 |
df = mmlu_df.copy()
|
21 |
-
numeric_columns = df.select_dtypes(include=["number"])
|
22 |
-
df["Average"] = numeric_columns.mean(axis=1)
|
23 |
df = df.sort_values(by='Average', ascending=False).reset_index(drop=True)
|
24 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
25 |
cols = df.columns.tolist()
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import plotly.express as px
|
4 |
+
from data.model_handler import ModelHandler
|
5 |
|
6 |
def unified_exam_result_table(unified_exam_df):
|
7 |
df = unified_exam_df.copy()
|
|
|
|
|
8 |
df = df.sort_values(by='Average', ascending=False).reset_index(drop=True)
|
9 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
10 |
cols = df.columns.tolist()
|
|
|
16 |
|
17 |
def mmlu_result_table(mmlu_df):
|
18 |
df = mmlu_df.copy()
|
|
|
|
|
19 |
df = df.sort_values(by='Average', ascending=False).reset_index(drop=True)
|
20 |
df.insert(0, 'Rank', range(1, len(df) + 1))
|
21 |
cols = df.columns.tolist()
|
model_handler.py β data/model_handler.py
RENAMED
@@ -5,8 +5,10 @@ from typing import Any, Dict
|
|
5 |
import pandas as pd
|
6 |
from huggingface_hub import HfApi, hf_hub_download
|
7 |
|
|
|
|
|
8 |
class ModelHandler:
|
9 |
-
def __init__(self, model_infos_path="model_results.json"):
|
10 |
self.api = HfApi()
|
11 |
self.model_infos_path = model_infos_path
|
12 |
self.model_infos = self._load_model_infos()
|
@@ -23,7 +25,7 @@ class ModelHandler:
|
|
23 |
json.dump(self.model_infos, f, indent=4)
|
24 |
|
25 |
def get_arm_bench_data(self):
|
26 |
-
models = self.api.list_models(filter="
|
27 |
model_names = {model["model_name"] for model in self.model_infos}
|
28 |
repositories = [model.modelId for model in models]
|
29 |
|
@@ -63,16 +65,22 @@ class ModelHandler:
|
|
63 |
|
64 |
if mmlu_results:
|
65 |
mmlu_row = {"Model": model_name}
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
if unified_exam_results:
|
71 |
unified_exam_row = {"Model": model_name}
|
72 |
-
for result in unified_exam_results:
|
73 |
-
unified_exam_row[result["category"]] = result["score"]
|
74 |
-
unified_exam_data.append(unified_exam_row)
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
mmlu_df = pd.DataFrame(mmlu_data)
|
78 |
unified_exam_df = pd.DataFrame(unified_exam_data)
|
|
|
5 |
import pandas as pd
|
6 |
from huggingface_hub import HfApi, hf_hub_download
|
7 |
|
8 |
+
from data.required_categories import required_mmlu_categories, required_unified_exam_categories
|
9 |
+
|
10 |
class ModelHandler:
|
11 |
+
def __init__(self, model_infos_path="data\model_results.json"):
|
12 |
self.api = HfApi()
|
13 |
self.model_infos_path = model_infos_path
|
14 |
self.model_infos = self._load_model_infos()
|
|
|
25 |
json.dump(self.model_infos, f, indent=4)
|
26 |
|
27 |
def get_arm_bench_data(self):
|
28 |
+
models = self.api.list_models(filter="Arm-LLM-Benchmark")
|
29 |
model_names = {model["model_name"] for model in self.model_infos}
|
30 |
repositories = [model.modelId for model in models]
|
31 |
|
|
|
65 |
|
66 |
if mmlu_results:
|
67 |
mmlu_row = {"Model": model_name}
|
68 |
+
|
69 |
+
mmlu_categories = {result["category"] for result in mmlu_results}
|
70 |
+
if all(category in mmlu_categories for category in required_mmlu_categories):
|
71 |
+
for result in mmlu_results:
|
72 |
+
mmlu_row[result["category"]] = result["score"]
|
73 |
+
mmlu_data.append(mmlu_row)
|
74 |
|
75 |
if unified_exam_results:
|
76 |
unified_exam_row = {"Model": model_name}
|
|
|
|
|
|
|
77 |
|
78 |
+
unified_exam_categories = {result["category"] for result in unified_exam_results}
|
79 |
+
|
80 |
+
if all(category in unified_exam_categories for category in required_unified_exam_categories):
|
81 |
+
for result in unified_exam_results:
|
82 |
+
unified_exam_row[result["category"]] = result["score"]
|
83 |
+
unified_exam_data.append(unified_exam_row)
|
84 |
|
85 |
mmlu_df = pd.DataFrame(mmlu_data)
|
86 |
unified_exam_df = pd.DataFrame(unified_exam_data)
|
model_results.json β data/model_results.json
RENAMED
@@ -4,6 +4,10 @@
|
|
4 |
"results": {
|
5 |
"mmlu_results": [],
|
6 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
7 |
{
|
8 |
"category": "Armenian language and literature",
|
9 |
"score": 10.5
|
@@ -23,6 +27,10 @@
|
|
23 |
"model_name": "claude-3-5-sonnet-20241022",
|
24 |
"results": {
|
25 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
26 |
{
|
27 |
"category": "Biology",
|
28 |
"score": 0.8667
|
@@ -81,6 +89,10 @@
|
|
81 |
}
|
82 |
],
|
83 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
84 |
{
|
85 |
"category": "Armenian language and literature",
|
86 |
"score": 10.0
|
@@ -100,6 +112,10 @@
|
|
100 |
"model_name": "gemini-2.0-flash",
|
101 |
"results": {
|
102 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
103 |
{
|
104 |
"category": "Biology",
|
105 |
"score": 0.85
|
@@ -158,6 +174,10 @@
|
|
158 |
}
|
159 |
],
|
160 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
161 |
{
|
162 |
"category": "Armenian language and literature",
|
163 |
"score": 5.5
|
@@ -177,6 +197,10 @@
|
|
177 |
"model_name": "gpt-4o",
|
178 |
"results": {
|
179 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
180 |
{
|
181 |
"category": "Biology",
|
182 |
"score": 0.8667
|
@@ -235,6 +259,10 @@
|
|
235 |
}
|
236 |
],
|
237 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
238 |
{
|
239 |
"category": "Armenian language and literature",
|
240 |
"score": 6.75
|
@@ -255,6 +283,10 @@
|
|
255 |
"results": {
|
256 |
"mmlu_results": [],
|
257 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
258 |
{
|
259 |
"category": "Armenian language and literature",
|
260 |
"score": 7.25
|
@@ -274,6 +306,10 @@
|
|
274 |
"model_name": "gemini-1.5-flash",
|
275 |
"results": {
|
276 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
277 |
{
|
278 |
"category": "Biology",
|
279 |
"score": 0.75
|
@@ -332,6 +368,10 @@
|
|
332 |
}
|
333 |
],
|
334 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
335 |
{
|
336 |
"category": "Armenian language and literature",
|
337 |
"score": 4.75
|
@@ -351,6 +391,10 @@
|
|
351 |
"model_name": "DeepSeek-V3",
|
352 |
"results": {
|
353 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
354 |
{
|
355 |
"category": "Biology",
|
356 |
"score": 0.8167
|
@@ -409,6 +453,10 @@
|
|
409 |
}
|
410 |
],
|
411 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
412 |
{
|
413 |
"category": "Armenian language and literature",
|
414 |
"score": 5.25
|
@@ -428,6 +476,10 @@
|
|
428 |
"model_name": "Meta-Llama-3.3-70B-Instruct",
|
429 |
"results": {
|
430 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
431 |
{
|
432 |
"category": "Biology",
|
433 |
"score": 0.7333
|
@@ -486,6 +538,10 @@
|
|
486 |
}
|
487 |
],
|
488 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
489 |
{
|
490 |
"category": "Armenian language and literature",
|
491 |
"score": 4.5
|
@@ -505,6 +561,10 @@
|
|
505 |
"model_name": "claude-3-5-haiku-20241022",
|
506 |
"results": {
|
507 |
"mmlu_results": [
|
|
|
|
|
|
|
|
|
508 |
{
|
509 |
"category": "Biology",
|
510 |
"score": 0.75
|
@@ -563,6 +623,10 @@
|
|
563 |
}
|
564 |
],
|
565 |
"unified_exam_results": [
|
|
|
|
|
|
|
|
|
566 |
{
|
567 |
"category": "Armenian language and literature",
|
568 |
"score": 5.0
|
|
|
4 |
"results": {
|
5 |
"mmlu_results": [],
|
6 |
"unified_exam_results": [
|
7 |
+
{
|
8 |
+
"category": "Average",
|
9 |
+
"score": 11.0833
|
10 |
+
},
|
11 |
{
|
12 |
"category": "Armenian language and literature",
|
13 |
"score": 10.5
|
|
|
27 |
"model_name": "claude-3-5-sonnet-20241022",
|
28 |
"results": {
|
29 |
"mmlu_results": [
|
30 |
+
{
|
31 |
+
"category": "Average",
|
32 |
+
"score": 0.6958
|
33 |
+
},
|
34 |
{
|
35 |
"category": "Biology",
|
36 |
"score": 0.8667
|
|
|
89 |
}
|
90 |
],
|
91 |
"unified_exam_results": [
|
92 |
+
{
|
93 |
+
"category": "Average",
|
94 |
+
"score": 10.6667
|
95 |
+
},
|
96 |
{
|
97 |
"category": "Armenian language and literature",
|
98 |
"score": 10.0
|
|
|
112 |
"model_name": "gemini-2.0-flash",
|
113 |
"results": {
|
114 |
"mmlu_results": [
|
115 |
+
{
|
116 |
+
"category": "Average",
|
117 |
+
"score": 0.7247
|
118 |
+
},
|
119 |
{
|
120 |
"category": "Biology",
|
121 |
"score": 0.85
|
|
|
174 |
}
|
175 |
],
|
176 |
"unified_exam_results": [
|
177 |
+
{
|
178 |
+
"category": "Average",
|
179 |
+
"score": 9.8333
|
180 |
+
},
|
181 |
{
|
182 |
"category": "Armenian language and literature",
|
183 |
"score": 5.5
|
|
|
197 |
"model_name": "gpt-4o",
|
198 |
"results": {
|
199 |
"mmlu_results": [
|
200 |
+
{
|
201 |
+
"category": "Average",
|
202 |
+
"score": 0.6758
|
203 |
+
},
|
204 |
{
|
205 |
"category": "Biology",
|
206 |
"score": 0.8667
|
|
|
259 |
}
|
260 |
],
|
261 |
"unified_exam_results": [
|
262 |
+
{
|
263 |
+
"category": "Average",
|
264 |
+
"score": 8.9167
|
265 |
+
},
|
266 |
{
|
267 |
"category": "Armenian language and literature",
|
268 |
"score": 6.75
|
|
|
283 |
"results": {
|
284 |
"mmlu_results": [],
|
285 |
"unified_exam_results": [
|
286 |
+
{
|
287 |
+
"category": "Average",
|
288 |
+
"score": 8.6667
|
289 |
+
},
|
290 |
{
|
291 |
"category": "Armenian language and literature",
|
292 |
"score": 7.25
|
|
|
306 |
"model_name": "gemini-1.5-flash",
|
307 |
"results": {
|
308 |
"mmlu_results": [
|
309 |
+
{
|
310 |
+
"category": "Average",
|
311 |
+
"score": 0.5592
|
312 |
+
},
|
313 |
{
|
314 |
"category": "Biology",
|
315 |
"score": 0.75
|
|
|
368 |
}
|
369 |
],
|
370 |
"unified_exam_results": [
|
371 |
+
{
|
372 |
+
"category": "Average",
|
373 |
+
"score": 7.8333
|
374 |
+
},
|
375 |
{
|
376 |
"category": "Armenian language and literature",
|
377 |
"score": 4.75
|
|
|
391 |
"model_name": "DeepSeek-V3",
|
392 |
"results": {
|
393 |
"mmlu_results": [
|
394 |
+
{
|
395 |
+
"category": "Average",
|
396 |
+
"score": 0.6633
|
397 |
+
},
|
398 |
{
|
399 |
"category": "Biology",
|
400 |
"score": 0.8167
|
|
|
453 |
}
|
454 |
],
|
455 |
"unified_exam_results": [
|
456 |
+
{
|
457 |
+
"category": "Average",
|
458 |
+
"score": 7.5
|
459 |
+
},
|
460 |
{
|
461 |
"category": "Armenian language and literature",
|
462 |
"score": 5.25
|
|
|
476 |
"model_name": "Meta-Llama-3.3-70B-Instruct",
|
477 |
"results": {
|
478 |
"mmlu_results": [
|
479 |
+
{
|
480 |
+
"category": "Average",
|
481 |
+
"score": 0.5139
|
482 |
+
},
|
483 |
{
|
484 |
"category": "Biology",
|
485 |
"score": 0.7333
|
|
|
538 |
}
|
539 |
],
|
540 |
"unified_exam_results": [
|
541 |
+
{
|
542 |
+
"category": "Average",
|
543 |
+
"score": 7.0833
|
544 |
+
},
|
545 |
{
|
546 |
"category": "Armenian language and literature",
|
547 |
"score": 4.5
|
|
|
561 |
"model_name": "claude-3-5-haiku-20241022",
|
562 |
"results": {
|
563 |
"mmlu_results": [
|
564 |
+
{
|
565 |
+
"category": "Average",
|
566 |
+
"score": 0.5198
|
567 |
+
},
|
568 |
{
|
569 |
"category": "Biology",
|
570 |
"score": 0.75
|
|
|
623 |
}
|
624 |
],
|
625 |
"unified_exam_results": [
|
626 |
+
{
|
627 |
+
"category": "Average",
|
628 |
+
"score": 6.5
|
629 |
+
},
|
630 |
{
|
631 |
"category": "Armenian language and literature",
|
632 |
"score": 5.0
|
data/required_categories.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
required_unified_exam_categories = [
|
2 |
+
"Average",
|
3 |
+
"Armenian language and literature",
|
4 |
+
"Armenian history",
|
5 |
+
"Mathematics"
|
6 |
+
]
|
7 |
+
|
8 |
+
required_mmlu_categories = [
|
9 |
+
"Biology",
|
10 |
+
"Business",
|
11 |
+
"Chemistry",
|
12 |
+
"Computer Science",
|
13 |
+
"Economics",
|
14 |
+
"Engineering",
|
15 |
+
"Health",
|
16 |
+
"History",
|
17 |
+
"Law",
|
18 |
+
"Math",
|
19 |
+
"Other",
|
20 |
+
"Philosophy",
|
21 |
+
"Physics",
|
22 |
+
"Psychology",
|
23 |
+
"Average"
|
24 |
+
]
|