Spaces:
Sleeping
Sleeping
Commit
Β·
ee5d44f
1
Parent(s):
daa3f25
Course Templates
Browse files- README.md +9 -8
- app.py +192 -60
- requirements.txt +2 -1
README.md
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
|
|
|
12 |
---
|
13 |
|
14 |
-
|
|
|
1 |
---
|
2 |
+
title: Template Final Assignment
|
3 |
+
emoji: π΅π»ββοΈ
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.25.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
hf_oauth: true
|
11 |
+
# optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
|
12 |
+
hf_oauth_expiration_minutes: 480
|
13 |
---
|
14 |
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,64 +1,196 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import inspect
|
5 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# (Keep Constants as is)
|
8 |
+
# --- Constants ---
|
9 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
+
|
11 |
+
# --- Basic Agent Definition ---
|
12 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
+
class BasicAgent:
|
14 |
+
def __init__(self):
|
15 |
+
print("BasicAgent initialized.")
|
16 |
+
def __call__(self, question: str) -> str:
|
17 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
18 |
+
fixed_answer = "This is a default answer."
|
19 |
+
print(f"Agent returning fixed answer: {fixed_answer}")
|
20 |
+
return fixed_answer
|
21 |
+
|
22 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
+
"""
|
24 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
25 |
+
and displays the results.
|
26 |
+
"""
|
27 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
29 |
+
|
30 |
+
if profile:
|
31 |
+
username= f"{profile.username}"
|
32 |
+
print(f"User logged in: {username}")
|
33 |
+
else:
|
34 |
+
print("User not logged in.")
|
35 |
+
return "Please Login to Hugging Face with the button.", None
|
36 |
+
|
37 |
+
api_url = DEFAULT_API_URL
|
38 |
+
questions_url = f"{api_url}/questions"
|
39 |
+
submit_url = f"{api_url}/submit"
|
40 |
+
|
41 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
+
try:
|
43 |
+
agent = BasicAgent()
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error instantiating agent: {e}")
|
46 |
+
return f"Error initializing agent: {e}", None
|
47 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
+
print(agent_code)
|
50 |
+
|
51 |
+
# 2. Fetch Questions
|
52 |
+
print(f"Fetching questions from: {questions_url}")
|
53 |
+
try:
|
54 |
+
response = requests.get(questions_url, timeout=15)
|
55 |
+
response.raise_for_status()
|
56 |
+
questions_data = response.json()
|
57 |
+
if not questions_data:
|
58 |
+
print("Fetched questions list is empty.")
|
59 |
+
return "Fetched questions list is empty or invalid format.", None
|
60 |
+
print(f"Fetched {len(questions_data)} questions.")
|
61 |
+
except requests.exceptions.RequestException as e:
|
62 |
+
print(f"Error fetching questions: {e}")
|
63 |
+
return f"Error fetching questions: {e}", None
|
64 |
+
except requests.exceptions.JSONDecodeError as e:
|
65 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
+
print(f"Response text: {response.text[:500]}")
|
67 |
+
return f"Error decoding server response for questions: {e}", None
|
68 |
+
except Exception as e:
|
69 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
70 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
71 |
+
|
72 |
+
# 3. Run your Agent
|
73 |
+
results_log = []
|
74 |
+
answers_payload = []
|
75 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
+
for item in questions_data:
|
77 |
+
task_id = item.get("task_id")
|
78 |
+
question_text = item.get("question")
|
79 |
+
if not task_id or question_text is None:
|
80 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
+
continue
|
82 |
+
try:
|
83 |
+
submitted_answer = agent(question_text)
|
84 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error running agent on task {task_id}: {e}")
|
88 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
89 |
+
|
90 |
+
if not answers_payload:
|
91 |
+
print("Agent did not produce any answers to submit.")
|
92 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
+
|
94 |
+
# 4. Prepare Submission
|
95 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
+
print(status_update)
|
98 |
+
|
99 |
+
# 5. Submit
|
100 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
+
try:
|
102 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
+
response.raise_for_status()
|
104 |
+
result_data = response.json()
|
105 |
+
final_status = (
|
106 |
+
f"Submission Successful!\n"
|
107 |
+
f"User: {result_data.get('username')}\n"
|
108 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
+
)
|
112 |
+
print("Submission successful.")
|
113 |
+
results_df = pd.DataFrame(results_log)
|
114 |
+
return final_status, results_df
|
115 |
+
except requests.exceptions.HTTPError as e:
|
116 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
+
try:
|
118 |
+
error_json = e.response.json()
|
119 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
+
except requests.exceptions.JSONDecodeError:
|
121 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
+
status_message = f"Submission Failed: {error_detail}"
|
123 |
+
print(status_message)
|
124 |
+
results_df = pd.DataFrame(results_log)
|
125 |
+
return status_message, results_df
|
126 |
+
except requests.exceptions.Timeout:
|
127 |
+
status_message = "Submission Failed: The request timed out."
|
128 |
+
print(status_message)
|
129 |
+
results_df = pd.DataFrame(results_log)
|
130 |
+
return status_message, results_df
|
131 |
+
except requests.exceptions.RequestException as e:
|
132 |
+
status_message = f"Submission Failed: Network error - {e}"
|
133 |
+
print(status_message)
|
134 |
+
results_df = pd.DataFrame(results_log)
|
135 |
+
return status_message, results_df
|
136 |
+
except Exception as e:
|
137 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
138 |
+
print(status_message)
|
139 |
+
results_df = pd.DataFrame(results_log)
|
140 |
+
return status_message, results_df
|
141 |
+
|
142 |
+
|
143 |
+
# --- Build Gradio Interface using Blocks ---
|
144 |
+
with gr.Blocks() as demo:
|
145 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
+
gr.Markdown(
|
147 |
+
"""
|
148 |
+
**Instructions:**
|
149 |
+
|
150 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
+
|
154 |
+
---
|
155 |
+
**Disclaimers:**
|
156 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
+
"""
|
159 |
+
)
|
160 |
+
|
161 |
+
gr.LoginButton()
|
162 |
+
|
163 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
+
|
165 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
+
# Removed max_rows=10 from DataFrame constructor
|
167 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
+
|
169 |
+
run_button.click(
|
170 |
+
fn=run_and_submit_all,
|
171 |
+
outputs=[status_output, results_table]
|
172 |
+
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
+
|
180 |
+
if space_host_startup:
|
181 |
+
print(f"β
SPACE_HOST found: {space_host_startup}")
|
182 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
+
else:
|
184 |
+
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
185 |
+
|
186 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
+
print(f"β
SPACE_ID found: {space_id_startup}")
|
188 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
+
else:
|
191 |
+
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
+
|
193 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
+
|
195 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
|
|
|
|
1 |
+
gradio
|
2 |
+
requests
|