MartinHummel commited on
Commit
ee5d44f
Β·
1 Parent(s): daa3f25

Course Templates

Browse files
Files changed (3) hide show
  1. README.md +9 -8
  2. app.py +192 -60
  3. requirements.txt +2 -1
README.md CHANGED
@@ -1,14 +1,15 @@
1
  ---
2
- title: FinalAssignment
3
- emoji: πŸ’¬
4
- colorFrom: yellow
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
- short_description: HugginFace Agent Course
 
12
  ---
13
 
14
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
1
  ---
2
+ title: Template Final Assignment
3
+ emoji: πŸ•΅πŸ»β€β™‚οΈ
4
+ colorFrom: indigo
5
+ colorTo: indigo
6
  sdk: gradio
7
+ sdk_version: 5.25.2
8
  app_file: app.py
9
  pinned: false
10
+ hf_oauth: true
11
+ # optional, default duration is 8 hours/480 minutes. Max duration is 30 days/43200 minutes.
12
+ hf_oauth_expiration_minutes: 480
13
  ---
14
 
15
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,64 +1,196 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
  import gradio as gr
3
+ import requests
4
+ import inspect
5
+ import pandas as pd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ # (Keep Constants as is)
8
+ # --- Constants ---
9
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
10
+
11
+ # --- Basic Agent Definition ---
12
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
13
+ class BasicAgent:
14
+ def __init__(self):
15
+ print("BasicAgent initialized.")
16
+ def __call__(self, question: str) -> str:
17
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
18
+ fixed_answer = "This is a default answer."
19
+ print(f"Agent returning fixed answer: {fixed_answer}")
20
+ return fixed_answer
21
+
22
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
23
+ """
24
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
25
+ and displays the results.
26
+ """
27
+ # --- Determine HF Space Runtime URL and Repo URL ---
28
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
29
+
30
+ if profile:
31
+ username= f"{profile.username}"
32
+ print(f"User logged in: {username}")
33
+ else:
34
+ print("User not logged in.")
35
+ return "Please Login to Hugging Face with the button.", None
36
+
37
+ api_url = DEFAULT_API_URL
38
+ questions_url = f"{api_url}/questions"
39
+ submit_url = f"{api_url}/submit"
40
+
41
+ # 1. Instantiate Agent ( modify this part to create your agent)
42
+ try:
43
+ agent = BasicAgent()
44
+ except Exception as e:
45
+ print(f"Error instantiating agent: {e}")
46
+ return f"Error initializing agent: {e}", None
47
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
48
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
49
+ print(agent_code)
50
+
51
+ # 2. Fetch Questions
52
+ print(f"Fetching questions from: {questions_url}")
53
+ try:
54
+ response = requests.get(questions_url, timeout=15)
55
+ response.raise_for_status()
56
+ questions_data = response.json()
57
+ if not questions_data:
58
+ print("Fetched questions list is empty.")
59
+ return "Fetched questions list is empty or invalid format.", None
60
+ print(f"Fetched {len(questions_data)} questions.")
61
+ except requests.exceptions.RequestException as e:
62
+ print(f"Error fetching questions: {e}")
63
+ return f"Error fetching questions: {e}", None
64
+ except requests.exceptions.JSONDecodeError as e:
65
+ print(f"Error decoding JSON response from questions endpoint: {e}")
66
+ print(f"Response text: {response.text[:500]}")
67
+ return f"Error decoding server response for questions: {e}", None
68
+ except Exception as e:
69
+ print(f"An unexpected error occurred fetching questions: {e}")
70
+ return f"An unexpected error occurred fetching questions: {e}", None
71
+
72
+ # 3. Run your Agent
73
+ results_log = []
74
+ answers_payload = []
75
+ print(f"Running agent on {len(questions_data)} questions...")
76
+ for item in questions_data:
77
+ task_id = item.get("task_id")
78
+ question_text = item.get("question")
79
+ if not task_id or question_text is None:
80
+ print(f"Skipping item with missing task_id or question: {item}")
81
+ continue
82
+ try:
83
+ submitted_answer = agent(question_text)
84
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
85
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
86
+ except Exception as e:
87
+ print(f"Error running agent on task {task_id}: {e}")
88
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
89
+
90
+ if not answers_payload:
91
+ print("Agent did not produce any answers to submit.")
92
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
93
+
94
+ # 4. Prepare Submission
95
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
96
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
97
+ print(status_update)
98
+
99
+ # 5. Submit
100
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
101
+ try:
102
+ response = requests.post(submit_url, json=submission_data, timeout=60)
103
+ response.raise_for_status()
104
+ result_data = response.json()
105
+ final_status = (
106
+ f"Submission Successful!\n"
107
+ f"User: {result_data.get('username')}\n"
108
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
109
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
110
+ f"Message: {result_data.get('message', 'No message received.')}"
111
+ )
112
+ print("Submission successful.")
113
+ results_df = pd.DataFrame(results_log)
114
+ return final_status, results_df
115
+ except requests.exceptions.HTTPError as e:
116
+ error_detail = f"Server responded with status {e.response.status_code}."
117
+ try:
118
+ error_json = e.response.json()
119
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
120
+ except requests.exceptions.JSONDecodeError:
121
+ error_detail += f" Response: {e.response.text[:500]}"
122
+ status_message = f"Submission Failed: {error_detail}"
123
+ print(status_message)
124
+ results_df = pd.DataFrame(results_log)
125
+ return status_message, results_df
126
+ except requests.exceptions.Timeout:
127
+ status_message = "Submission Failed: The request timed out."
128
+ print(status_message)
129
+ results_df = pd.DataFrame(results_log)
130
+ return status_message, results_df
131
+ except requests.exceptions.RequestException as e:
132
+ status_message = f"Submission Failed: Network error - {e}"
133
+ print(status_message)
134
+ results_df = pd.DataFrame(results_log)
135
+ return status_message, results_df
136
+ except Exception as e:
137
+ status_message = f"An unexpected error occurred during submission: {e}"
138
+ print(status_message)
139
+ results_df = pd.DataFrame(results_log)
140
+ return status_message, results_df
141
+
142
+
143
+ # --- Build Gradio Interface using Blocks ---
144
+ with gr.Blocks() as demo:
145
+ gr.Markdown("# Basic Agent Evaluation Runner")
146
+ gr.Markdown(
147
+ """
148
+ **Instructions:**
149
+
150
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
151
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
152
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
153
+
154
+ ---
155
+ **Disclaimers:**
156
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
157
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
158
+ """
159
+ )
160
+
161
+ gr.LoginButton()
162
+
163
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
164
+
165
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
+ # Removed max_rows=10 from DataFrame constructor
167
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
168
+
169
+ run_button.click(
170
+ fn=run_and_submit_all,
171
+ outputs=[status_output, results_table]
172
+ )
173
 
174
  if __name__ == "__main__":
175
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
176
+ # Check for SPACE_HOST and SPACE_ID at startup for information
177
+ space_host_startup = os.getenv("SPACE_HOST")
178
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
179
+
180
+ if space_host_startup:
181
+ print(f"βœ… SPACE_HOST found: {space_host_startup}")
182
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
183
+ else:
184
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
185
+
186
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
187
+ print(f"βœ… SPACE_ID found: {space_id_startup}")
188
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
189
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
190
+ else:
191
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
192
+
193
+ print("-"*(60 + len(" App Starting ")) + "\n")
194
+
195
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
196
+ demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -1 +1,2 @@
1
- huggingface_hub==0.25.2
 
 
1
+ gradio
2
+ requests