Spaces:
Runtime error
Runtime error
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
@@ -1,447 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import torch
|
3 |
-
# from PIL import Image
|
4 |
-
# from model import CRM
|
5 |
-
# from inference import generate3d
|
6 |
-
# import numpy as np
|
7 |
-
|
8 |
-
# # Load model
|
9 |
-
# crm_path = "CRM.pth" # Make sure the model is uploaded to the Space
|
10 |
-
# model = CRM(torch.load(crm_path, map_location="cpu"))
|
11 |
-
# model = model.to("cuda:0" if torch.cuda.is_available() else "cpu")
|
12 |
-
|
13 |
-
# def generate_3d(image_path, seed=1234, scale=5.5, step=30):
|
14 |
-
# image = Image.open(image_path).convert("RGB")
|
15 |
-
# np_img = np.array(image)
|
16 |
-
# glb_path = generate3d(model, np_img, np_img, "cuda:0" if torch.cuda.is_available() else "cpu")
|
17 |
-
# return glb_path
|
18 |
-
|
19 |
-
# iface = gr.Interface(
|
20 |
-
# fn=generate_3d,
|
21 |
-
# inputs=gr.Image(type="filepath"),
|
22 |
-
# outputs=gr.Model3D(),
|
23 |
-
# title="Convolutional Reconstruction Model (CRM)",
|
24 |
-
# description="Upload an image to generate a 3D model."
|
25 |
-
# )
|
26 |
-
|
27 |
-
# iface.launch()
|
28 |
-
|
29 |
-
|
30 |
-
#############2nd################3
|
31 |
-
# import os
|
32 |
-
# import torch
|
33 |
-
# import gradio as gr
|
34 |
-
# from huggingface_hub import hf_hub_download
|
35 |
-
# from model import CRM # Make sure this matches your model file structure
|
36 |
-
|
37 |
-
# # Define model details
|
38 |
-
# REPO_ID = "Mariam-Elz/CRM" # Hugging Face model repo
|
39 |
-
# MODEL_FILES = {
|
40 |
-
# "ccm-diffusion": "ccm-diffusion.pth",
|
41 |
-
# "pixel-diffusion": "pixel-diffusion.pth",
|
42 |
-
# "CRM": "CRM.pth"
|
43 |
-
# }
|
44 |
-
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
45 |
-
|
46 |
-
# # Download models from Hugging Face if not already present
|
47 |
-
# MODEL_DIR = "./models"
|
48 |
-
# os.makedirs(MODEL_DIR, exist_ok=True)
|
49 |
-
|
50 |
-
# for name, filename in MODEL_FILES.items():
|
51 |
-
# model_path = os.path.join(MODEL_DIR, filename)
|
52 |
-
# if not os.path.exists(model_path):
|
53 |
-
# print(f"Downloading {filename}...")
|
54 |
-
# hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=MODEL_DIR)
|
55 |
-
|
56 |
-
# # Load the model
|
57 |
-
# print("Loading CRM Model...")
|
58 |
-
# model = CRM()
|
59 |
-
# model.load_state_dict(torch.load(os.path.join(MODEL_DIR, MODEL_FILES["CRM"]), map_location=DEVICE))
|
60 |
-
# model.to(DEVICE)
|
61 |
-
# model.eval()
|
62 |
-
# print("✅ Model Loaded Successfully!")
|
63 |
-
|
64 |
-
# # Define Gradio Interface
|
65 |
-
# def predict(input_image):
|
66 |
-
# with torch.no_grad():
|
67 |
-
# output = model(input_image.to(DEVICE)) # Modify based on model input format
|
68 |
-
# return output.cpu()
|
69 |
-
|
70 |
-
# demo = gr.Interface(
|
71 |
-
# fn=predict,
|
72 |
-
# inputs=gr.Image(type="pil"),
|
73 |
-
# outputs=gr.Image(type="pil"),
|
74 |
-
# title="Convolutional Reconstruction Model (CRM)",
|
75 |
-
# description="Upload an image to generate a reconstructed output."
|
76 |
-
# )
|
77 |
-
|
78 |
-
# if __name__ == "__main__":
|
79 |
-
# demo.launch()
|
80 |
-
########################3rd-MAIN######################3
|
81 |
-
|
82 |
-
# import torch
|
83 |
-
# import gradio as gr
|
84 |
-
# import requests
|
85 |
-
# import os
|
86 |
-
|
87 |
-
# # Download model weights from Hugging Face model repo (if not already present)
|
88 |
-
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
89 |
-
|
90 |
-
# model_files = {
|
91 |
-
# "ccm-diffusion.pth": "ccm-diffusion.pth",
|
92 |
-
# "pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
-
# "CRM.pth": "CRM.pth",
|
94 |
-
# }
|
95 |
-
|
96 |
-
# os.makedirs("models", exist_ok=True)
|
97 |
-
|
98 |
-
# for filename, output_path in model_files.items():
|
99 |
-
# file_path = f"models/{output_path}"
|
100 |
-
# if not os.path.exists(file_path):
|
101 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
-
# print(f"Downloading {filename}...")
|
103 |
-
# response = requests.get(url)
|
104 |
-
# with open(file_path, "wb") as f:
|
105 |
-
# f.write(response.content)
|
106 |
-
|
107 |
-
# # Load model (This part depends on how the model is defined)
|
108 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
-
|
110 |
-
# def load_model():
|
111 |
-
# model_path = "models/CRM.pth"
|
112 |
-
# model = torch.load(model_path, map_location=device)
|
113 |
-
# model.eval()
|
114 |
-
# return model
|
115 |
-
|
116 |
-
# model = load_model()
|
117 |
-
|
118 |
-
# # Define inference function
|
119 |
-
# def infer(image):
|
120 |
-
# """Process input image and return a reconstructed image."""
|
121 |
-
# with torch.no_grad():
|
122 |
-
# # Assuming model expects a tensor input
|
123 |
-
# image_tensor = torch.tensor(image).to(device)
|
124 |
-
# output = model(image_tensor)
|
125 |
-
# return output.cpu().numpy()
|
126 |
-
|
127 |
-
# # Create Gradio UI
|
128 |
-
# demo = gr.Interface(
|
129 |
-
# fn=infer,
|
130 |
-
# inputs=gr.Image(type="numpy"),
|
131 |
-
# outputs=gr.Image(type="numpy"),
|
132 |
-
# title="Convolutional Reconstruction Model",
|
133 |
-
# description="Upload an image to get the reconstructed output."
|
134 |
-
# )
|
135 |
-
|
136 |
-
# if __name__ == "__main__":
|
137 |
-
# demo.launch()
|
138 |
-
|
139 |
-
|
140 |
-
#################4th##################
|
141 |
-
|
142 |
-
# import torch
|
143 |
-
# import gradio as gr
|
144 |
-
# import requests
|
145 |
-
# import os
|
146 |
-
|
147 |
-
# # Define model repo
|
148 |
-
# model_repo = "Mariam-Elz/CRM"
|
149 |
-
|
150 |
-
# # Define model files and download paths
|
151 |
-
# model_files = {
|
152 |
-
# "CRM.pth": "models/CRM.pth"
|
153 |
-
# }
|
154 |
-
|
155 |
-
# os.makedirs("models", exist_ok=True)
|
156 |
-
|
157 |
-
# # Download model files only if they don't exist
|
158 |
-
# for filename, output_path in model_files.items():
|
159 |
-
# if not os.path.exists(output_path):
|
160 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
161 |
-
# print(f"Downloading {filename}...")
|
162 |
-
# response = requests.get(url)
|
163 |
-
# with open(output_path, "wb") as f:
|
164 |
-
# f.write(response.content)
|
165 |
-
|
166 |
-
# # Load model with low memory usage
|
167 |
-
# def load_model():
|
168 |
-
# model_path = "models/CRM.pth"
|
169 |
-
# model = torch.load(model_path, map_location="cpu") # Load on CPU to reduce memory usage
|
170 |
-
# model.eval()
|
171 |
-
# return model
|
172 |
-
|
173 |
-
# model = load_model()
|
174 |
-
|
175 |
-
# # Define inference function
|
176 |
-
# def infer(image):
|
177 |
-
# """Process input image and return a reconstructed image."""
|
178 |
-
# with torch.no_grad():
|
179 |
-
# image_tensor = torch.tensor(image).unsqueeze(0) # Add batch dimension
|
180 |
-
# image_tensor = image_tensor.to("cpu") # Keep on CPU to save memory
|
181 |
-
# output = model(image_tensor)
|
182 |
-
# return output.squeeze(0).numpy()
|
183 |
-
|
184 |
-
# # Create Gradio UI
|
185 |
-
# demo = gr.Interface(
|
186 |
-
# fn=infer,
|
187 |
-
# inputs=gr.Image(type="numpy"),
|
188 |
-
# outputs=gr.Image(type="numpy"),
|
189 |
-
# title="Convolutional Reconstruction Model",
|
190 |
-
# description="Upload an image to get the reconstructed output."
|
191 |
-
# )
|
192 |
-
|
193 |
-
# if __name__ == "__main__":
|
194 |
-
# demo.launch()
|
195 |
-
|
196 |
-
|
197 |
-
# ##############5TH#################
|
198 |
-
# import torch
|
199 |
-
# import torch.nn as nn
|
200 |
-
# import gradio as gr
|
201 |
-
# import requests
|
202 |
-
# import os
|
203 |
-
|
204 |
-
# # Define model repo
|
205 |
-
# model_repo = "Mariam-Elz/CRM"
|
206 |
-
|
207 |
-
# # Define model files and download paths
|
208 |
-
# model_files = {
|
209 |
-
# "CRM.pth": "models/CRM.pth"
|
210 |
-
# }
|
211 |
-
|
212 |
-
# os.makedirs("models", exist_ok=True)
|
213 |
-
|
214 |
-
# # Download model files only if they don't exist
|
215 |
-
# for filename, output_path in model_files.items():
|
216 |
-
# if not os.path.exists(output_path):
|
217 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
218 |
-
# print(f"Downloading {filename}...")
|
219 |
-
# response = requests.get(url)
|
220 |
-
# with open(output_path, "wb") as f:
|
221 |
-
# f.write(response.content)
|
222 |
-
|
223 |
-
# # Define the model architecture (you MUST replace this with your actual model)
|
224 |
-
# class CRM_Model(nn.Module):
|
225 |
-
# def __init__(self):
|
226 |
-
# super(CRM_Model, self).__init__()
|
227 |
-
# self.layer1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
228 |
-
# self.relu = nn.ReLU()
|
229 |
-
# self.layer2 = nn.Conv2d(64, 3, kernel_size=3, padding=1)
|
230 |
-
|
231 |
-
# def forward(self, x):
|
232 |
-
# x = self.layer1(x)
|
233 |
-
# x = self.relu(x)
|
234 |
-
# x = self.layer2(x)
|
235 |
-
# return x
|
236 |
-
|
237 |
-
# # Load model with proper architecture
|
238 |
-
# def load_model():
|
239 |
-
# model = CRM_Model() # Instantiate the model architecture
|
240 |
-
# model_path = "models/CRM.pth"
|
241 |
-
# model.load_state_dict(torch.load(model_path, map_location="cpu")) # Load weights
|
242 |
-
# model.eval() # Set to evaluation mode
|
243 |
-
# return model
|
244 |
-
|
245 |
-
# model = load_model()
|
246 |
-
|
247 |
-
# # Define inference function
|
248 |
-
# def infer(image):
|
249 |
-
# """Process input image and return a reconstructed image."""
|
250 |
-
# with torch.no_grad():
|
251 |
-
# image_tensor = torch.tensor(image).unsqueeze(0).permute(0, 3, 1, 2).float() / 255.0 # Convert to tensor
|
252 |
-
# output = model(image_tensor) # Run through model
|
253 |
-
# output = output.squeeze(0).permute(1, 2, 0).numpy() * 255.0 # Convert back to image
|
254 |
-
# return output.astype("uint8")
|
255 |
-
|
256 |
-
# # Create Gradio UI
|
257 |
-
# demo = gr.Interface(
|
258 |
-
# fn=infer,
|
259 |
-
# inputs=gr.Image(type="numpy"),
|
260 |
-
# outputs=gr.Image(type="numpy"),
|
261 |
-
# title="Convolutional Reconstruction Model",
|
262 |
-
# description="Upload an image to get the reconstructed output."
|
263 |
-
# )
|
264 |
-
|
265 |
-
# if __name__ == "__main__":
|
266 |
-
# demo.launch()
|
267 |
-
|
268 |
-
|
269 |
-
#############6th-worked-proc##################
|
270 |
-
# import torch
|
271 |
-
# import gradio as gr
|
272 |
-
# import requests
|
273 |
-
# import os
|
274 |
-
# import numpy as np
|
275 |
-
|
276 |
-
# # Hugging Face Model Repository
|
277 |
-
# model_repo = "Mariam-Elz/CRM"
|
278 |
-
|
279 |
-
# # Download Model Weights (Only CRM.pth to Save Memory)
|
280 |
-
# model_path = "models/CRM.pth"
|
281 |
-
# os.makedirs("models", exist_ok=True)
|
282 |
-
|
283 |
-
# if not os.path.exists(model_path):
|
284 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
285 |
-
# print(f"Downloading CRM.pth...")
|
286 |
-
# response = requests.get(url)
|
287 |
-
# with open(model_path, "wb") as f:
|
288 |
-
# f.write(response.content)
|
289 |
-
|
290 |
-
# # Set Device (Use CPU to Reduce RAM Usage)
|
291 |
-
# device = "cpu"
|
292 |
-
|
293 |
-
# # Load Model Efficiently
|
294 |
-
# def load_model():
|
295 |
-
# model = torch.load(model_path, map_location=device)
|
296 |
-
# if isinstance(model, torch.nn.Module):
|
297 |
-
# model.eval() # Ensure model is in inference mode
|
298 |
-
# return model
|
299 |
-
|
300 |
-
# # Load model only when needed (saves memory)
|
301 |
-
# model = load_model()
|
302 |
-
|
303 |
-
# # Define Inference Function with Memory Optimizations
|
304 |
-
# def infer(image):
|
305 |
-
# """Process input image and return a reconstructed image."""
|
306 |
-
# with torch.no_grad():
|
307 |
-
# # Convert image to torch tensor & normalize (float16 to save RAM)
|
308 |
-
# image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
|
309 |
-
# image_tensor = image_tensor.to(device)
|
310 |
-
|
311 |
-
# # Model Inference
|
312 |
-
# output = model(image_tensor)
|
313 |
-
|
314 |
-
# # Convert back to numpy image format
|
315 |
-
# output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0
|
316 |
-
# output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
317 |
-
|
318 |
-
# # Free Memory
|
319 |
-
# del image_tensor, output
|
320 |
-
# torch.cuda.empty_cache()
|
321 |
-
|
322 |
-
# return output_image
|
323 |
-
|
324 |
-
# # Create Gradio UI
|
325 |
-
# demo = gr.Interface(
|
326 |
-
# fn=infer,
|
327 |
-
# inputs=gr.Image(type="numpy"),
|
328 |
-
# outputs=gr.Image(type="numpy"),
|
329 |
-
# title="Optimized Convolutional Reconstruction Model",
|
330 |
-
# description="Upload an image to get the reconstructed output with reduced memory usage."
|
331 |
-
# )
|
332 |
-
|
333 |
-
# if __name__ == "__main__":
|
334 |
-
# demo.launch()
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
#############7tth################
|
339 |
-
# import torch
|
340 |
-
# import torch.nn as nn
|
341 |
-
# import gradio as gr
|
342 |
-
# import requests
|
343 |
-
# import os
|
344 |
-
# import torchvision.transforms as transforms
|
345 |
-
# import numpy as np
|
346 |
-
# from PIL import Image
|
347 |
-
|
348 |
-
# # Hugging Face Model Repository
|
349 |
-
# model_repo = "Mariam-Elz/CRM"
|
350 |
-
|
351 |
-
# # Model File Path
|
352 |
-
# model_path = "models/CRM.pth"
|
353 |
-
# os.makedirs("models", exist_ok=True)
|
354 |
-
|
355 |
-
# # Download model weights if not present
|
356 |
-
# if not os.path.exists(model_path):
|
357 |
-
# url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
358 |
-
# print(f"Downloading CRM.pth...")
|
359 |
-
# response = requests.get(url)
|
360 |
-
# with open(model_path, "wb") as f:
|
361 |
-
# f.write(response.content)
|
362 |
-
|
363 |
-
# # Set Device
|
364 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
365 |
-
|
366 |
-
# # Define Model Architecture (Replace with your actual model)
|
367 |
-
# class CRMModel(nn.Module):
|
368 |
-
# def __init__(self):
|
369 |
-
# super(CRMModel, self).__init__()
|
370 |
-
# self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
|
371 |
-
# self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
|
372 |
-
# self.relu = nn.ReLU()
|
373 |
-
|
374 |
-
# def forward(self, x):
|
375 |
-
# x = self.relu(self.conv1(x))
|
376 |
-
# x = self.relu(self.conv2(x))
|
377 |
-
# return x
|
378 |
-
|
379 |
-
# # Load Model
|
380 |
-
# def load_model():
|
381 |
-
# print("Loading model...")
|
382 |
-
# model = CRMModel() # Use the correct architecture here
|
383 |
-
# state_dict = torch.load(model_path, map_location=device)
|
384 |
-
|
385 |
-
# if isinstance(state_dict, dict): # Ensure it's a valid state_dict
|
386 |
-
# model.load_state_dict(state_dict)
|
387 |
-
# else:
|
388 |
-
# raise ValueError("Error: The loaded state_dict is not in the correct format.")
|
389 |
-
|
390 |
-
# model.to(device)
|
391 |
-
# model.eval()
|
392 |
-
# print("Model loaded successfully!")
|
393 |
-
# return model
|
394 |
-
|
395 |
-
# # Load the model
|
396 |
-
# model = load_model()
|
397 |
-
|
398 |
-
# # Define Inference Function
|
399 |
-
# def infer(image):
|
400 |
-
# """Process input image and return a reconstructed 3D output."""
|
401 |
-
# try:
|
402 |
-
# print("Preprocessing image...")
|
403 |
-
|
404 |
-
# # Convert image to PyTorch tensor & normalize
|
405 |
-
# transform = transforms.Compose([
|
406 |
-
# transforms.Resize((256, 256)), # Resize to fit model input
|
407 |
-
# transforms.ToTensor(), # Converts to tensor (C, H, W)
|
408 |
-
# transforms.Normalize(mean=[0.5], std=[0.5]), # Normalize
|
409 |
-
# ])
|
410 |
-
# image_tensor = transform(image).unsqueeze(0).to(device) # Add batch dimension
|
411 |
-
|
412 |
-
# print("Running inference...")
|
413 |
-
# with torch.no_grad():
|
414 |
-
# output = model(image_tensor) # Forward pass
|
415 |
-
|
416 |
-
# # Ensure output is a valid tensor
|
417 |
-
# if isinstance(output, torch.Tensor):
|
418 |
-
# output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
419 |
-
# output_image = np.clip(output_image * 255.0, 0, 255).astype(np.uint8)
|
420 |
-
# print("Inference complete! Returning output.")
|
421 |
-
# return output_image
|
422 |
-
# else:
|
423 |
-
# print("Error: Model output is not a tensor.")
|
424 |
-
# return None
|
425 |
-
|
426 |
-
# except Exception as e:
|
427 |
-
# print(f"Error during inference: {e}")
|
428 |
-
# return None
|
429 |
-
|
430 |
-
# # Create Gradio UI
|
431 |
-
# demo = gr.Interface(
|
432 |
-
# fn=infer,
|
433 |
-
# inputs=gr.Image(type="pil"),
|
434 |
-
# outputs=gr.Image(type="numpy"),
|
435 |
-
# title="Convolutional Reconstruction Model",
|
436 |
-
# description="Upload an image to get the reconstructed output."
|
437 |
-
# )
|
438 |
-
|
439 |
-
# if __name__ == "__main__":
|
440 |
-
# demo.launch()
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
# Not ready to use yet
|
446 |
import spaces
|
447 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Not ready to use yet
|
2 |
import spaces
|
3 |
import argparse
|