Spaces:
Runtime error
Runtime error
Upload imagedream/ldm/modules/encoders/modules.py with huggingface_hub
Browse files
imagedream/ldm/modules/encoders/modules.py
CHANGED
@@ -1,329 +1,329 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.utils.checkpoint import checkpoint
|
4 |
-
|
5 |
-
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import open_clip
|
9 |
-
from PIL import Image
|
10 |
-
from ...util import default, count_params
|
11 |
-
|
12 |
-
|
13 |
-
class AbstractEncoder(nn.Module):
|
14 |
-
def __init__(self):
|
15 |
-
super().__init__()
|
16 |
-
|
17 |
-
def encode(self, *args, **kwargs):
|
18 |
-
raise NotImplementedError
|
19 |
-
|
20 |
-
|
21 |
-
class IdentityEncoder(AbstractEncoder):
|
22 |
-
def encode(self, x):
|
23 |
-
return x
|
24 |
-
|
25 |
-
|
26 |
-
class ClassEmbedder(nn.Module):
|
27 |
-
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1):
|
28 |
-
super().__init__()
|
29 |
-
self.key = key
|
30 |
-
self.embedding = nn.Embedding(n_classes, embed_dim)
|
31 |
-
self.n_classes = n_classes
|
32 |
-
self.ucg_rate = ucg_rate
|
33 |
-
|
34 |
-
def forward(self, batch, key=None, disable_dropout=False):
|
35 |
-
if key is None:
|
36 |
-
key = self.key
|
37 |
-
# this is for use in crossattn
|
38 |
-
c = batch[key][:, None]
|
39 |
-
if self.ucg_rate > 0.0 and not disable_dropout:
|
40 |
-
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
41 |
-
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
42 |
-
c = c.long()
|
43 |
-
c = self.embedding(c)
|
44 |
-
return c
|
45 |
-
|
46 |
-
def get_unconditional_conditioning(self, bs, device="cuda"):
|
47 |
-
uc_class = (
|
48 |
-
self.n_classes - 1
|
49 |
-
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
50 |
-
uc = torch.ones((bs,), device=device) * uc_class
|
51 |
-
uc = {self.key: uc}
|
52 |
-
return uc
|
53 |
-
|
54 |
-
|
55 |
-
def disabled_train(self, mode=True):
|
56 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
57 |
-
does not change anymore."""
|
58 |
-
return self
|
59 |
-
|
60 |
-
|
61 |
-
class FrozenT5Embedder(AbstractEncoder):
|
62 |
-
"""Uses the T5 transformer encoder for text"""
|
63 |
-
|
64 |
-
def __init__(
|
65 |
-
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True
|
66 |
-
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
67 |
-
super().__init__()
|
68 |
-
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
69 |
-
self.transformer = T5EncoderModel.from_pretrained(version)
|
70 |
-
self.device = device
|
71 |
-
self.max_length = max_length # TODO: typical value?
|
72 |
-
if freeze:
|
73 |
-
self.freeze()
|
74 |
-
|
75 |
-
def freeze(self):
|
76 |
-
self.transformer = self.transformer.eval()
|
77 |
-
# self.train = disabled_train
|
78 |
-
for param in self.parameters():
|
79 |
-
param.requires_grad = False
|
80 |
-
|
81 |
-
def forward(self, text):
|
82 |
-
batch_encoding = self.tokenizer(
|
83 |
-
text,
|
84 |
-
truncation=True,
|
85 |
-
max_length=self.max_length,
|
86 |
-
return_length=True,
|
87 |
-
return_overflowing_tokens=False,
|
88 |
-
padding="max_length",
|
89 |
-
return_tensors="pt",
|
90 |
-
)
|
91 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
92 |
-
outputs = self.transformer(input_ids=tokens)
|
93 |
-
|
94 |
-
z = outputs.last_hidden_state
|
95 |
-
return z
|
96 |
-
|
97 |
-
def encode(self, text):
|
98 |
-
return self(text)
|
99 |
-
|
100 |
-
|
101 |
-
class FrozenCLIPEmbedder(AbstractEncoder):
|
102 |
-
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
103 |
-
|
104 |
-
LAYERS = ["last", "pooled", "hidden"]
|
105 |
-
|
106 |
-
def __init__(
|
107 |
-
self,
|
108 |
-
version="openai/clip-vit-large-patch14",
|
109 |
-
device="cuda",
|
110 |
-
max_length=77,
|
111 |
-
freeze=True,
|
112 |
-
layer="last",
|
113 |
-
layer_idx=None,
|
114 |
-
): # clip-vit-base-patch32
|
115 |
-
super().__init__()
|
116 |
-
assert layer in self.LAYERS
|
117 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
118 |
-
self.transformer = CLIPTextModel.from_pretrained(version)
|
119 |
-
self.device = device
|
120 |
-
self.max_length = max_length
|
121 |
-
if freeze:
|
122 |
-
self.freeze()
|
123 |
-
self.layer = layer
|
124 |
-
self.layer_idx = layer_idx
|
125 |
-
if layer == "hidden":
|
126 |
-
assert layer_idx is not None
|
127 |
-
assert 0 <= abs(layer_idx) <= 12
|
128 |
-
|
129 |
-
def freeze(self):
|
130 |
-
self.transformer = self.transformer.eval()
|
131 |
-
# self.train = disabled_train
|
132 |
-
for param in self.parameters():
|
133 |
-
param.requires_grad = False
|
134 |
-
|
135 |
-
def forward(self, text):
|
136 |
-
batch_encoding = self.tokenizer(
|
137 |
-
text,
|
138 |
-
truncation=True,
|
139 |
-
max_length=self.max_length,
|
140 |
-
return_length=True,
|
141 |
-
return_overflowing_tokens=False,
|
142 |
-
padding="max_length",
|
143 |
-
return_tensors="pt",
|
144 |
-
)
|
145 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
146 |
-
outputs = self.transformer(
|
147 |
-
input_ids=tokens, output_hidden_states=self.layer == "hidden"
|
148 |
-
)
|
149 |
-
if self.layer == "last":
|
150 |
-
z = outputs.last_hidden_state
|
151 |
-
elif self.layer == "pooled":
|
152 |
-
z = outputs.pooler_output[:, None, :]
|
153 |
-
else:
|
154 |
-
z = outputs.hidden_states[self.layer_idx]
|
155 |
-
return z
|
156 |
-
|
157 |
-
def encode(self, text):
|
158 |
-
return self(text)
|
159 |
-
|
160 |
-
|
161 |
-
class FrozenOpenCLIPEmbedder(AbstractEncoder, nn.Module):
|
162 |
-
"""
|
163 |
-
Uses the OpenCLIP transformer encoder for text
|
164 |
-
"""
|
165 |
-
|
166 |
-
LAYERS = [
|
167 |
-
# "pooled",
|
168 |
-
"last",
|
169 |
-
"penultimate",
|
170 |
-
]
|
171 |
-
|
172 |
-
def __init__(
|
173 |
-
self,
|
174 |
-
arch="ViT-H-14",
|
175 |
-
version="laion2b_s32b_b79k",
|
176 |
-
device="cuda",
|
177 |
-
max_length=77,
|
178 |
-
freeze=True,
|
179 |
-
layer="last",
|
180 |
-
ip_mode=None
|
181 |
-
):
|
182 |
-
"""_summary_
|
183 |
-
|
184 |
-
Args:
|
185 |
-
ip_mode (str, optional): what is the image promcessing mode. Defaults to None.
|
186 |
-
|
187 |
-
"""
|
188 |
-
super().__init__()
|
189 |
-
assert layer in self.LAYERS
|
190 |
-
model, _, preprocess = open_clip.create_model_and_transforms(
|
191 |
-
arch, device=torch.device("cpu"), pretrained=version
|
192 |
-
)
|
193 |
-
if ip_mode is None:
|
194 |
-
del model.visual
|
195 |
-
|
196 |
-
self.model = model
|
197 |
-
self.preprocess = preprocess
|
198 |
-
self.device = device
|
199 |
-
self.max_length = max_length
|
200 |
-
self.ip_mode = ip_mode
|
201 |
-
if freeze:
|
202 |
-
self.freeze()
|
203 |
-
self.layer = layer
|
204 |
-
if self.layer == "last":
|
205 |
-
self.layer_idx = 0
|
206 |
-
elif self.layer == "penultimate":
|
207 |
-
self.layer_idx = 1
|
208 |
-
else:
|
209 |
-
raise NotImplementedError()
|
210 |
-
|
211 |
-
def freeze(self):
|
212 |
-
self.model = self.model.eval()
|
213 |
-
for param in self.parameters():
|
214 |
-
param.requires_grad = False
|
215 |
-
|
216 |
-
def forward(self, text):
|
217 |
-
tokens = open_clip.tokenize(text)
|
218 |
-
z = self.encode_with_transformer(tokens.to(self.device))
|
219 |
-
return z
|
220 |
-
|
221 |
-
def forward_image(self, pil_image):
|
222 |
-
if isinstance(pil_image, Image.Image):
|
223 |
-
pil_image = [pil_image]
|
224 |
-
if isinstance(pil_image, torch.Tensor):
|
225 |
-
pil_image = pil_image.cpu().numpy()
|
226 |
-
if isinstance(pil_image, np.ndarray):
|
227 |
-
if pil_image.ndim == 3:
|
228 |
-
pil_image = pil_image[None, :, :, :]
|
229 |
-
pil_image = [Image.fromarray(x) for x in pil_image]
|
230 |
-
|
231 |
-
images = []
|
232 |
-
for image in pil_image:
|
233 |
-
images.append(self.preprocess(image).to(self.device))
|
234 |
-
|
235 |
-
image = torch.stack(images, 0) # to [b, 3, h, w]
|
236 |
-
if self.ip_mode == "global":
|
237 |
-
image_features = self.model.encode_image(image)
|
238 |
-
image_features /= image_features.norm(dim=-1, keepdim=True)
|
239 |
-
elif "local" in self.ip_mode:
|
240 |
-
image_features = self.encode_image_with_transformer(image)
|
241 |
-
|
242 |
-
return image_features # b, l
|
243 |
-
|
244 |
-
def encode_image_with_transformer(self, x):
|
245 |
-
visual = self.model.visual
|
246 |
-
x = visual.conv1(x) # shape = [*, width, grid, grid]
|
247 |
-
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
248 |
-
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
249 |
-
|
250 |
-
# class embeddings and positional embeddings
|
251 |
-
x = torch.cat(
|
252 |
-
[visual.class_embedding.to(x.dtype) + \
|
253 |
-
torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
254 |
-
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
255 |
-
x = x + visual.positional_embedding.to(x.dtype)
|
256 |
-
|
257 |
-
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
258 |
-
# x = visual.patch_dropout(x)
|
259 |
-
x = visual.ln_pre(x)
|
260 |
-
|
261 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
262 |
-
hidden = self.image_transformer_forward(x)
|
263 |
-
x = hidden[-2].permute(1, 0, 2) # LND -> NLD
|
264 |
-
return x
|
265 |
-
|
266 |
-
def image_transformer_forward(self, x):
|
267 |
-
encoder_states = ()
|
268 |
-
trans = self.model.visual.transformer
|
269 |
-
for r in trans.resblocks:
|
270 |
-
if trans.grad_checkpointing and not torch.jit.is_scripting():
|
271 |
-
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
272 |
-
x = checkpoint(r, x, None, None, None)
|
273 |
-
else:
|
274 |
-
x = r(x, attn_mask=None)
|
275 |
-
encoder_states = encoder_states + (x, )
|
276 |
-
return encoder_states
|
277 |
-
|
278 |
-
def encode_with_transformer(self, text):
|
279 |
-
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
280 |
-
x = x + self.model.positional_embedding
|
281 |
-
x = x.permute(1, 0, 2) # NLD -> LND
|
282 |
-
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
283 |
-
x = x.permute(1, 0, 2) # LND -> NLD
|
284 |
-
x = self.model.ln_final(x)
|
285 |
-
return x
|
286 |
-
|
287 |
-
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
288 |
-
for i, r in enumerate(self.model.transformer.resblocks):
|
289 |
-
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
290 |
-
break
|
291 |
-
if (
|
292 |
-
self.model.transformer.grad_checkpointing
|
293 |
-
and not torch.jit.is_scripting()
|
294 |
-
):
|
295 |
-
x = checkpoint(r, x, attn_mask)
|
296 |
-
else:
|
297 |
-
x = r(x, attn_mask=attn_mask)
|
298 |
-
return x
|
299 |
-
|
300 |
-
def encode(self, text):
|
301 |
-
return self(text)
|
302 |
-
|
303 |
-
|
304 |
-
class FrozenCLIPT5Encoder(AbstractEncoder):
|
305 |
-
def __init__(
|
306 |
-
self,
|
307 |
-
clip_version="openai/clip-vit-large-patch14",
|
308 |
-
t5_version="google/t5-v1_1-xl",
|
309 |
-
device="cuda",
|
310 |
-
clip_max_length=77,
|
311 |
-
t5_max_length=77,
|
312 |
-
):
|
313 |
-
super().__init__()
|
314 |
-
self.clip_encoder = FrozenCLIPEmbedder(
|
315 |
-
clip_version, device, max_length=clip_max_length
|
316 |
-
)
|
317 |
-
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
318 |
-
print(
|
319 |
-
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
|
320 |
-
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params."
|
321 |
-
)
|
322 |
-
|
323 |
-
def encode(self, text):
|
324 |
-
return self(text)
|
325 |
-
|
326 |
-
def forward(self, text):
|
327 |
-
clip_z = self.clip_encoder.encode(text)
|
328 |
-
t5_z = self.t5_encoder.encode(text)
|
329 |
-
return [clip_z, t5_z]
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.utils.checkpoint import checkpoint
|
4 |
+
|
5 |
+
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import open_clip
|
9 |
+
from PIL import Image
|
10 |
+
from ...util import default, count_params
|
11 |
+
|
12 |
+
|
13 |
+
class AbstractEncoder(nn.Module):
|
14 |
+
def __init__(self):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
def encode(self, *args, **kwargs):
|
18 |
+
raise NotImplementedError
|
19 |
+
|
20 |
+
|
21 |
+
class IdentityEncoder(AbstractEncoder):
|
22 |
+
def encode(self, x):
|
23 |
+
return x
|
24 |
+
|
25 |
+
|
26 |
+
class ClassEmbedder(nn.Module):
|
27 |
+
def __init__(self, embed_dim, n_classes=1000, key="class", ucg_rate=0.1):
|
28 |
+
super().__init__()
|
29 |
+
self.key = key
|
30 |
+
self.embedding = nn.Embedding(n_classes, embed_dim)
|
31 |
+
self.n_classes = n_classes
|
32 |
+
self.ucg_rate = ucg_rate
|
33 |
+
|
34 |
+
def forward(self, batch, key=None, disable_dropout=False):
|
35 |
+
if key is None:
|
36 |
+
key = self.key
|
37 |
+
# this is for use in crossattn
|
38 |
+
c = batch[key][:, None]
|
39 |
+
if self.ucg_rate > 0.0 and not disable_dropout:
|
40 |
+
mask = 1.0 - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
|
41 |
+
c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
|
42 |
+
c = c.long()
|
43 |
+
c = self.embedding(c)
|
44 |
+
return c
|
45 |
+
|
46 |
+
def get_unconditional_conditioning(self, bs, device="cuda"):
|
47 |
+
uc_class = (
|
48 |
+
self.n_classes - 1
|
49 |
+
) # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
50 |
+
uc = torch.ones((bs,), device=device) * uc_class
|
51 |
+
uc = {self.key: uc}
|
52 |
+
return uc
|
53 |
+
|
54 |
+
|
55 |
+
def disabled_train(self, mode=True):
|
56 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
57 |
+
does not change anymore."""
|
58 |
+
return self
|
59 |
+
|
60 |
+
|
61 |
+
class FrozenT5Embedder(AbstractEncoder):
|
62 |
+
"""Uses the T5 transformer encoder for text"""
|
63 |
+
|
64 |
+
def __init__(
|
65 |
+
self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True
|
66 |
+
): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
67 |
+
super().__init__()
|
68 |
+
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
69 |
+
self.transformer = T5EncoderModel.from_pretrained(version)
|
70 |
+
self.device = device
|
71 |
+
self.max_length = max_length # TODO: typical value?
|
72 |
+
if freeze:
|
73 |
+
self.freeze()
|
74 |
+
|
75 |
+
def freeze(self):
|
76 |
+
self.transformer = self.transformer.eval()
|
77 |
+
# self.train = disabled_train
|
78 |
+
for param in self.parameters():
|
79 |
+
param.requires_grad = False
|
80 |
+
|
81 |
+
def forward(self, text):
|
82 |
+
batch_encoding = self.tokenizer(
|
83 |
+
text,
|
84 |
+
truncation=True,
|
85 |
+
max_length=self.max_length,
|
86 |
+
return_length=True,
|
87 |
+
return_overflowing_tokens=False,
|
88 |
+
padding="max_length",
|
89 |
+
return_tensors="pt",
|
90 |
+
)
|
91 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
92 |
+
outputs = self.transformer(input_ids=tokens)
|
93 |
+
|
94 |
+
z = outputs.last_hidden_state
|
95 |
+
return z
|
96 |
+
|
97 |
+
def encode(self, text):
|
98 |
+
return self(text)
|
99 |
+
|
100 |
+
|
101 |
+
class FrozenCLIPEmbedder(AbstractEncoder):
|
102 |
+
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
103 |
+
|
104 |
+
LAYERS = ["last", "pooled", "hidden"]
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
version="openai/clip-vit-large-patch14",
|
109 |
+
device="cuda",
|
110 |
+
max_length=77,
|
111 |
+
freeze=True,
|
112 |
+
layer="last",
|
113 |
+
layer_idx=None,
|
114 |
+
): # clip-vit-base-patch32
|
115 |
+
super().__init__()
|
116 |
+
assert layer in self.LAYERS
|
117 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
118 |
+
self.transformer = CLIPTextModel.from_pretrained(version)
|
119 |
+
self.device = device
|
120 |
+
self.max_length = max_length
|
121 |
+
if freeze:
|
122 |
+
self.freeze()
|
123 |
+
self.layer = layer
|
124 |
+
self.layer_idx = layer_idx
|
125 |
+
if layer == "hidden":
|
126 |
+
assert layer_idx is not None
|
127 |
+
assert 0 <= abs(layer_idx) <= 12
|
128 |
+
|
129 |
+
def freeze(self):
|
130 |
+
self.transformer = self.transformer.eval()
|
131 |
+
# self.train = disabled_train
|
132 |
+
for param in self.parameters():
|
133 |
+
param.requires_grad = False
|
134 |
+
|
135 |
+
def forward(self, text):
|
136 |
+
batch_encoding = self.tokenizer(
|
137 |
+
text,
|
138 |
+
truncation=True,
|
139 |
+
max_length=self.max_length,
|
140 |
+
return_length=True,
|
141 |
+
return_overflowing_tokens=False,
|
142 |
+
padding="max_length",
|
143 |
+
return_tensors="pt",
|
144 |
+
)
|
145 |
+
tokens = batch_encoding["input_ids"].to(self.device)
|
146 |
+
outputs = self.transformer(
|
147 |
+
input_ids=tokens, output_hidden_states=self.layer == "hidden"
|
148 |
+
)
|
149 |
+
if self.layer == "last":
|
150 |
+
z = outputs.last_hidden_state
|
151 |
+
elif self.layer == "pooled":
|
152 |
+
z = outputs.pooler_output[:, None, :]
|
153 |
+
else:
|
154 |
+
z = outputs.hidden_states[self.layer_idx]
|
155 |
+
return z
|
156 |
+
|
157 |
+
def encode(self, text):
|
158 |
+
return self(text)
|
159 |
+
|
160 |
+
|
161 |
+
class FrozenOpenCLIPEmbedder(AbstractEncoder, nn.Module):
|
162 |
+
"""
|
163 |
+
Uses the OpenCLIP transformer encoder for text
|
164 |
+
"""
|
165 |
+
|
166 |
+
LAYERS = [
|
167 |
+
# "pooled",
|
168 |
+
"last",
|
169 |
+
"penultimate",
|
170 |
+
]
|
171 |
+
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
arch="ViT-H-14",
|
175 |
+
version="laion2b_s32b_b79k",
|
176 |
+
device="cuda",
|
177 |
+
max_length=77,
|
178 |
+
freeze=True,
|
179 |
+
layer="last",
|
180 |
+
ip_mode=None
|
181 |
+
):
|
182 |
+
"""_summary_
|
183 |
+
|
184 |
+
Args:
|
185 |
+
ip_mode (str, optional): what is the image promcessing mode. Defaults to None.
|
186 |
+
|
187 |
+
"""
|
188 |
+
super().__init__()
|
189 |
+
assert layer in self.LAYERS
|
190 |
+
model, _, preprocess = open_clip.create_model_and_transforms(
|
191 |
+
arch, device=torch.device("cpu"), pretrained=version
|
192 |
+
)
|
193 |
+
if ip_mode is None:
|
194 |
+
del model.visual
|
195 |
+
|
196 |
+
self.model = model
|
197 |
+
self.preprocess = preprocess
|
198 |
+
self.device = device
|
199 |
+
self.max_length = max_length
|
200 |
+
self.ip_mode = ip_mode
|
201 |
+
if freeze:
|
202 |
+
self.freeze()
|
203 |
+
self.layer = layer
|
204 |
+
if self.layer == "last":
|
205 |
+
self.layer_idx = 0
|
206 |
+
elif self.layer == "penultimate":
|
207 |
+
self.layer_idx = 1
|
208 |
+
else:
|
209 |
+
raise NotImplementedError()
|
210 |
+
|
211 |
+
def freeze(self):
|
212 |
+
self.model = self.model.eval()
|
213 |
+
for param in self.parameters():
|
214 |
+
param.requires_grad = False
|
215 |
+
|
216 |
+
def forward(self, text):
|
217 |
+
tokens = open_clip.tokenize(text)
|
218 |
+
z = self.encode_with_transformer(tokens.to(self.device))
|
219 |
+
return z
|
220 |
+
|
221 |
+
def forward_image(self, pil_image):
|
222 |
+
if isinstance(pil_image, Image.Image):
|
223 |
+
pil_image = [pil_image]
|
224 |
+
if isinstance(pil_image, torch.Tensor):
|
225 |
+
pil_image = pil_image.cpu().numpy()
|
226 |
+
if isinstance(pil_image, np.ndarray):
|
227 |
+
if pil_image.ndim == 3:
|
228 |
+
pil_image = pil_image[None, :, :, :]
|
229 |
+
pil_image = [Image.fromarray(x) for x in pil_image]
|
230 |
+
|
231 |
+
images = []
|
232 |
+
for image in pil_image:
|
233 |
+
images.append(self.preprocess(image).to(self.device))
|
234 |
+
|
235 |
+
image = torch.stack(images, 0) # to [b, 3, h, w]
|
236 |
+
if self.ip_mode == "global":
|
237 |
+
image_features = self.model.encode_image(image)
|
238 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
239 |
+
elif "local" in self.ip_mode:
|
240 |
+
image_features = self.encode_image_with_transformer(image)
|
241 |
+
|
242 |
+
return image_features # b, l
|
243 |
+
|
244 |
+
def encode_image_with_transformer(self, x):
|
245 |
+
visual = self.model.visual
|
246 |
+
x = visual.conv1(x) # shape = [*, width, grid, grid]
|
247 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
248 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
249 |
+
|
250 |
+
# class embeddings and positional embeddings
|
251 |
+
x = torch.cat(
|
252 |
+
[visual.class_embedding.to(x.dtype) + \
|
253 |
+
torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
|
254 |
+
x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
255 |
+
x = x + visual.positional_embedding.to(x.dtype)
|
256 |
+
|
257 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
|
258 |
+
# x = visual.patch_dropout(x)
|
259 |
+
x = visual.ln_pre(x)
|
260 |
+
|
261 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
262 |
+
hidden = self.image_transformer_forward(x)
|
263 |
+
x = hidden[-2].permute(1, 0, 2) # LND -> NLD
|
264 |
+
return x
|
265 |
+
|
266 |
+
def image_transformer_forward(self, x):
|
267 |
+
encoder_states = ()
|
268 |
+
trans = self.model.visual.transformer
|
269 |
+
for r in trans.resblocks:
|
270 |
+
if trans.grad_checkpointing and not torch.jit.is_scripting():
|
271 |
+
# TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372
|
272 |
+
x = checkpoint(r, x, None, None, None)
|
273 |
+
else:
|
274 |
+
x = r(x, attn_mask=None)
|
275 |
+
encoder_states = encoder_states + (x, )
|
276 |
+
return encoder_states
|
277 |
+
|
278 |
+
def encode_with_transformer(self, text):
|
279 |
+
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
|
280 |
+
x = x + self.model.positional_embedding
|
281 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
282 |
+
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
|
283 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
284 |
+
x = self.model.ln_final(x)
|
285 |
+
return x
|
286 |
+
|
287 |
+
def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
|
288 |
+
for i, r in enumerate(self.model.transformer.resblocks):
|
289 |
+
if i == len(self.model.transformer.resblocks) - self.layer_idx:
|
290 |
+
break
|
291 |
+
if (
|
292 |
+
self.model.transformer.grad_checkpointing
|
293 |
+
and not torch.jit.is_scripting()
|
294 |
+
):
|
295 |
+
x = checkpoint(r, x, attn_mask)
|
296 |
+
else:
|
297 |
+
x = r(x, attn_mask=attn_mask)
|
298 |
+
return x
|
299 |
+
|
300 |
+
def encode(self, text):
|
301 |
+
return self(text)
|
302 |
+
|
303 |
+
|
304 |
+
class FrozenCLIPT5Encoder(AbstractEncoder):
|
305 |
+
def __init__(
|
306 |
+
self,
|
307 |
+
clip_version="openai/clip-vit-large-patch14",
|
308 |
+
t5_version="google/t5-v1_1-xl",
|
309 |
+
device="cuda",
|
310 |
+
clip_max_length=77,
|
311 |
+
t5_max_length=77,
|
312 |
+
):
|
313 |
+
super().__init__()
|
314 |
+
self.clip_encoder = FrozenCLIPEmbedder(
|
315 |
+
clip_version, device, max_length=clip_max_length
|
316 |
+
)
|
317 |
+
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
|
318 |
+
print(
|
319 |
+
f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
|
320 |
+
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params."
|
321 |
+
)
|
322 |
+
|
323 |
+
def encode(self, text):
|
324 |
+
return self(text)
|
325 |
+
|
326 |
+
def forward(self, text):
|
327 |
+
clip_z = self.clip_encoder.encode(text)
|
328 |
+
t5_z = self.t5_encoder.encode(text)
|
329 |
+
return [clip_z, t5_z]
|